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ABSTRACT 

The Szekeres metric represents an exact inhomogeneous and anisotropic solution of the Einstein Equations and it has no Killing 

vector fields [Georg and Hellaby, Physical Review D 95, (2017)]. This means that this solutions presents a more general class 

of solutions. It is known to possess axial symmetry. 

   The inhomogeneous Szekeres cosmological models (ISCM) within the framework of scalar-tensor theory (STT) of gravity are 

obtained. 

   Inhomogeneous generalizations of the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models have gained 

interest in the astrophysical community and are more often employed to study cosmologicalphenomena. 

   In this paper, we first give the solutions of the STT field Equations. Andthen it’s physical and geometrical properties of this 

metric and the reviews of recent developments in the field and shows the importance of an inhomogeneous framework in the 

analysis of cosmological observations. 

Keywords: ISCM, STT of gravity. 

 

1. INTRODUCTION 

Einstein's general theory of relativity (GR) is a 
geometrical theory of space-time. The 
fundamental building block is a metric tensor 
field 𝑔𝑖𝑗which is a tensor of rank two. 

Alternatives to GR are physical theories that 
attempt to describe the phenomenon of 
gravitation in competition to Einstein's theory of 
GR. In an alternative theory based on a metric 
tensor field along with another dynamical scalar 
field coupled to it is proposed by Brans and Dicke 
[4] accordingly called STT of gravity. 

   The theory formulated in [4] which is an STT 

of gravitation in which the tensor field alone is 

geometrized and the scalar field is aligned to the 

geometry. Sen and Dunn [12] have proposed a 

new STT of gravitation in which both the scalar 

and tensor fields have intrinsic geometrical 

significance. 

The fields Equations in STT are given by, 

 

 

𝐺𝑖𝑗 +
𝜔(𝜙)

𝜙2 [∇𝑖𝜙∇𝑗𝜙 −
1

2
𝑔𝑖𝑗∇𝑘𝜙∇𝑘𝜙] 

 

+ 
1

𝜙
[∇𝑖∇𝑗𝜙 − 𝑔𝑖𝑗□𝜙] =

8𝜋

𝜙
𝑇𝑖𝑗, 

(1.1) 

 

where Gij is the Einstein tensor, ω(ϕ) is some 

function of ϕ, ϕ is scalar field, ∇i is the covariant 

derivative operator, □ = ∇k∇k= gkl∇l∇k is the 

d’Alembert operator for a scalar field. One can 

take the trace of Equation (1.1) overall space to 

gij, by using gijGij = −R, we obtain  

(2𝜔(𝜙) + 3)□𝜙 = 8𝜋𝑇 −
𝑑𝜔

𝑑𝜙
∇𝑘𝜙∇𝑘𝜙,       (1.002) 

where T = gijTij is the trace of the stress-energy. 

Also, the matter satisfies the following 

conservation Equation  

∇iT
ij = 0. (1.3) 

The conservation Equation gives above implies 

that the test-particles describes geodesics as in the 

case of GR. 
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2. THE METRIC AND THE FIELD 

EQUATIONS 

The Szekeres metric is given by [9]  

𝑑𝑠2 = 𝑑𝑡2 − e2𝐴(𝑑𝑥2 + 𝑑𝑦2) − e2𝐵𝑑𝑧2,   (2.1) 

 

 where the metric coefficients A and B are 

functions of all space-time co-ordinates i.e.,  

A = A(x, y, z, t), B = B(x, y, z, t). 
The computations of relevant tensors ; for metric 

(2.1) gives,   

R = 2e−2A(By
2 + Ayy + Byy + Bx

2 + Axx + Bxx)

− 2e−2B(3Az
2 − 2AzBz + 2Azz) 

+2[3�̇�2 + 2�̇��̇� + �̇�2 + 2�̈� + �̈�],   (2.2) 

  

 where an overhead dot denotes derivative with 

respect to time 𝑡 and partial derivatives with 

respect to space variable are denoted by relevant 

subscripts e.g., 𝐵𝑥𝑦 =
𝜕2𝐵

𝜕𝑥𝜕𝑦
, etc. 

    The energy-momentum tensor for a perfect 

fluid is given by,  

 

𝑇𝑖𝑗 = (𝜌 + 𝑝)𝑢𝑖𝑢𝑗 − 𝑝𝑔𝑖𝑗,                         (2.3) 

 where 𝜌 is the proper energy density, 𝑝 is the 

isotropic pressure and choosing a comoving 

observer we take, 𝑢𝑖 = (0,0,0,1) as 4-velocity of 

the fluid particles which satisfy the condition 

𝑢𝑖𝑢𝑖 = 1. The average scale-factor 𝑎(𝑡), and 

spatial volume 𝑉 are given by,  

 

𝑉 = √−𝑔 = 𝑎3 = e2𝐴+𝐵.                             (2.4) 

In a cosmological setting, we define Hubble, 

deceleration, jerk, and snap parameters by,  

 

𝐻(𝑡) =
�̇�

𝑎
=

1

3

�̇�

𝑉
=

1

3
∑3

𝑖=1 𝐻𝑖 =
1

3
(2�̇� + �̇�), (2.5) 

𝑞(𝑡) = −
�̈�

𝑎
𝐻−2 = − (1 +

�̇�

𝐻2) = − (1 +
2�̈�+�̈�

3𝐻2 ),                                     

                                                                   (2.6)  

𝑗(𝑡) =
𝑎

𝑎
𝐻−3 = 𝑞 + 2𝑞2 −

�̇�

𝐻
= 1 + 3

�̇�

𝐻2 +
�̈�

𝐻2,

 (2.7) 

  

𝑠(𝑡) =
𝑎

𝑎
𝐻−4 =

𝑎𝑎3

�̇�4 .                                     (2.8) 

 In terms of the these parameters, we consider the 

following definitions  

�̇� = −𝐻2(1 + 𝑞),                                    (2.9) 

    �̈� = 𝐻3(𝑗 + 3𝑞 + 2),                            (2.10) 

     �⃛� = 𝐻4(𝑠 − 2𝑗 − 5𝑞 − 3).                   (2.11) 

 To realize how this term arises, consider the 

Taylor expansion of the scale factor, about the 

present time, 𝑡0 

𝑎(𝑡) = 𝑎0 + �̇�0(𝑡 − 𝑡0) 

    +
1

2
�̈�0(𝑡 − 𝑡0)2+. . . . . . . .,            (2.12)  

 where the sub-zeros indicate the terms are 

evaluated at the present. Using Equations of 

deceleration, jerk, and snap parameters are 

dimensionless, and we can write   

 

𝑎(𝑡) = 𝑎0 [1 + 𝐻0(𝑡 − 𝑡0) −
1

2
𝑞0𝐻0

2(𝑡 − 𝑡0)2 +
1

3!
𝑗0𝐻0

3(𝑡 − 𝑡0)3 +
1

4!
𝑠0𝐻0

4(𝑡 − 𝑡0)4+ 𝑂([𝑡 −

𝑡0]5)],                                          (2.13)  

  where 𝐻0, 𝑞0, 𝑗0 and 𝑠0, are the present time at 

𝑡 = 𝑡0. In terms, the red-shift of Taylor expansion 

reads  
1

𝑧 + 1
= 𝐻0(𝑡 − 𝑡0) −

1

2
𝑞0𝐻0

2(𝑡 − 𝑡0)2 + 

1

3!
𝑗0𝐻0

3(𝑡 − 𝑡0)3 + 
1

4!
𝑠0𝐻0

4(𝑡 − 𝑡0)4+ 𝑂([𝑡 −

𝑡0]5).                                                                (2.14)  

 For small 𝐻0(𝑡 − 𝑡0) this can be inverted to yield  

𝑡 − 𝑡0 = 𝐻0
−1 [𝑧 − (1 +

𝑞0

2
)𝑧2+. . . . . ].       (2.15)  

 If coordinates are chosen so cosmic time 𝑡 = 0 

denotes the time of the big bang (phase), then 𝑡 =
0 is the age of the universe. The Hubble 

parameters (HPs) in the directions of 𝑥, 𝑦 and 𝑧-

axes are given by  

𝐻1 =   𝐻2 = �̇�, 𝐻3 =  �̇�.                       (2.16) 

The cosmological parameters such as the scalar 

expansion (𝜃), shear scalar (𝜎2), shear parameter 

(Σ2), and anisotropy parameter 𝐴𝑚 are given by,  

𝜃 = 3𝐻 = 2𝐻1 + 𝐻3 ,                     (2.17) 
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𝜎2 =
1

2
𝜎𝑖𝑗𝜎𝑖𝑗 =

1

2
(∑3

𝑖=1 𝐻𝑖
2 − 3𝐻2) =

1

3
(𝐻1 −

𝐻3)2,                                          (2.18) 

Σ2 =
𝜎2

3𝐻2 =
1

3
(

𝐻1−𝐻3

𝐻
)

2
,                              (2.19) 

𝐴𝑚 =
1

3
∑3

𝑖=1 [
𝐻𝑖−𝐻

𝐻
]

2
=

1

3
(2 [

𝐻1−𝐻

𝐻
]

2
+

[
𝐻3−𝐻

𝐻
]

2
),                                          (2.20) 

 where 𝐻1, 𝐻2, and 𝐻3are given as in Equation 

(2.16). 

3. EXACT SOLUTION FOR SZEKERES 

MODEL 

Here we first develop some important 

cosmological parameters and EFEs for SMs and 

then find the exact solutions of EFEs. In fact, the 

differential Equation obtained in terms of the 

metric coefficient for =  (𝑡)is apparently not 

solvable.By using Equations (1.1), (2.1), and 

(2.3), we obtain a set of differential Equations 

for SMs, 

�̇�1 + �̇�3 + 𝐻1
2 + 𝐻3

2 + 𝐻1𝐻3 −
 e−2𝐴[𝐵𝑦

2 + 𝐵𝑦𝑦 − 𝐴𝑦𝐵𝑦 + 𝐴𝑥𝐵𝑥] +

e−2𝐵[𝐴𝑧𝐵𝑧 − 𝐴𝑧
2 − 𝐴𝑧𝑧] +

𝜔

2
(

�̇�

𝜙
)

2

+
�̈�

𝜙
+

(𝐻1 + 𝐻3)
�̇�

𝜙
= −

8𝜋𝑝

𝜙
,                                   (3.1) 

 

�̇�1 + �̇�3 + 𝐻1
2 + 𝐻3

2 + 𝐻1𝐻3 −
 e−2𝐴[𝐵𝑥

2 + 𝐵𝑥𝑥 − 𝐴𝑥𝐵𝑦𝑥 + 𝐴𝑦𝐵𝑦] +

e−2𝐵[𝐴𝑧𝐵𝑧 − 𝐴𝑧
2 − 𝐴𝑧𝑧] +

𝜔

2
(

�̇�

𝜙
)

2

+
�̈�

𝜙
+ (𝐻1 +

𝐻3)
�̇�

𝜙
= −

8𝜋𝑝

𝜙
,                                              (3.2) 

2�̇�1 + 3𝐻1
2 − e−2𝐴[𝐴𝑦𝑦 + 𝐴𝑥𝑥] − e−2𝐵𝐴𝑧  

2  

+
𝜔

2
(

�̇�

𝜙
)

2

+
�̈�

𝜙
+ (2𝐻1)

�̇�

𝜙

= −
8𝜋𝑝

𝜙
,                            (3.3) 

   𝐻1
2 + 2𝐻1𝐻3 − e−2𝐴[𝐴𝑥𝑥 + 𝐵𝑥𝑥 +

𝐵𝑦
2 + 𝐴𝑦𝑦 + 𝐵𝑦𝑦 + 𝐵𝑥

2] + e−2𝐵[2𝐴𝑧𝐵𝑧 − 3𝐴𝑧
2 −

2𝐴𝑧𝑧] −
𝜔

2
(

�̇�

𝜙
)

2

+ (2𝐻1 + 𝐻3)
�̇�

𝜙
=

8𝜋𝜌

𝜙
,      (3.4) 

𝐵𝑥[𝐴𝑦 − 𝐵𝑦] + 𝐴𝑥𝐵𝑦 − 𝐵𝑥𝑦 = 0,   (3.5)  

𝐵𝑥𝐴𝑧 − 𝐴𝑥𝑧 = 0,                                (3.6)  

𝐵𝑦𝐴𝑧 − 𝐴𝑦𝑧 = 0, =                                          (3.7) 

𝐵𝑥[𝐻1 − 𝐻3] − (𝐻1)𝑥 − (𝐻3)𝑥 = 0,            (3.8) 

𝐵𝑦[𝐻1 − 𝐻3] − (𝐻1)𝑦 − (𝐻3)𝑦 = 0,           (3.9) 

𝐴𝑧[𝐻1 − 𝐻3] − (𝐻1)𝑧 = 0.           (3.10) 

 

From Equations (3.6), (3.7), and (3.10) after 

differentiating with respect to 𝑥, 𝑦, and 𝑡 

respectively we say,  

(e−𝐵𝐴𝑧)𝑥 = (e−𝐵𝐴𝑧)𝑦 = 0, and (e𝐴−𝐵𝐴𝑧)𝑡 = 0 

                                                              (3.11) 

 Using the integrability condition, the first two 

Equations of (3.11) imply that,  

e−𝐵𝐴𝑧 = 𝑢(𝑧, 𝑡) .                                             (3.12) 

 The cases 𝑢 = 0 and 𝑢 ≠ 0 have to be 

considered separately because the integration 

proceeds in a different way in each case, and the 

limit 𝐴𝑧 → 0 of the solution for 𝐴𝑧 ≠ 0 is 

singular. Thus, if 𝐴𝑧 ≠ 0 we must have (𝐻1)𝑥𝑦 =

0, we shall consider the following possibilities  

(1) 𝐴𝑧 = 0,  

(2) 𝐴𝑧 ≠ 0 , (𝐻1)𝑥𝑦 = 0, 
 to get solutions of the field Equations. 

3. 1  THE SUBFAMILY  𝑨𝒛 = 𝟎 

The Equations (3.6), (3.7), and (3.10) are equal 

zero and fulfilled identically. In solving the other 

Equations, we can assume that (𝐻1)𝑥 = (𝐻1)𝑦 =

0 because otherwise, the Equations have no 

solutions; [11]. Then  

e𝐴 = Φ(𝑡)e𝜈(𝑥,𝑦) ,                             (3.13) 

 where Φ and 𝜈 are unknown functions, while 

Equations (3.8), and (3.9) are equal zero imply 

that  

e𝐵−𝐴𝐵𝑥 = �̃�1(𝑥, 𝑦, 𝑧), e𝐵−𝐴𝐵𝑦 = �̃�2(𝑥, 𝑦, 𝑧), 
                                                              (3.14) 

 where �̃�1 and �̃�2 are other unknown functions. 

Using Equation (3.13) for e𝐴, and denoting  

�̃�1(𝑥, 𝑦, 𝑧) = 𝜂1e−𝜈, �̃�2(𝑥, 𝑦, 𝑧) = 𝜂2e−𝜈 ,  (3.15) 

 we obtain  

e𝐵𝐵𝑥 = Φ(𝑡)𝜂1(𝑥, 𝑦, 𝑧),     e𝐵𝐵𝑦Φ(𝑡)𝜂2(𝑥, 𝑦, 𝑧).  

                                                                    (3.16) 

 The integrability condition (e𝐵𝐵𝑥)𝑦 = (e𝐵𝐵𝑦)
𝑥
 

implies (𝜂1)𝑦 = (𝜂2)𝑥. This means that a 
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function 𝜂(𝑥, 𝑦, 𝑧) exists such that 𝜂1 = 𝜂𝑥, 𝜂2 =
𝜂𝑦.Knowing this, ( 3.14) can be integrated to give  

e𝐵 = Φ(𝑡)𝜂(𝑥, 𝑦, 𝑧) + 𝜇(𝑧, 𝑡).       (3.17) 

 where 𝜇 is an unknown function. Now if we 

replace 𝐴 , and 𝐵 from Equations (3.13), and 

(3.17) in the field Equation (3.3), we have similar 

differential Equations in Φ as 

 

2ΦΦ̈ + Φ̇2 + 2ΦΦ̇ (
�̇�

𝜙
)  

+Φ2 [
8𝜋𝑝

𝜙
+

𝜔

2
(

�̇�

𝜙
)

2

+
�̈�

𝜙
] = −𝐾,                (3.18)                            

where Φ, and 𝑝 depend only on t, and 𝐾 an 

arbitrary constant [6],  

𝐾 = −e−2𝜈[𝜈𝑥𝑥 + 𝜈𝑦𝑦] ,                                 (3.19) 

 because 𝜈 depends only on 𝑥, and 𝑦. Here we 

take the solution for 𝜈 in the form  

e−𝜈 = 𝛼(𝑧)(𝑥2 + 𝑦2) + 𝛽1(𝑧)𝑥 + 𝛽2(𝑧)𝑦 

 +  𝛾(𝑧),                                                      (3.20) 

with the restriction  

𝛽1
2 + 𝛽2

2 − 4𝛼𝛾 = −𝐾,                  (3.21) 

 where 𝛼(𝑧), 𝛽1(𝑧), 𝛽2(𝑧), and 𝛾(𝑧) are arbitrary 

functions (𝛼, and 𝛾 being real) Now to determine 

the function 𝜂, we have from the field Equations 

(3.1), and (3.2), the solution  

(e−𝜈𝜂)𝑥𝑥 = (e−𝜈𝜂)𝑦𝑦 = 0.           (3.22) 

 From the field Equation (3.5), we have the 

solution  

 e−𝜈𝜂 = 𝑃(𝑧)[𝑥2 + 𝑦2] + 𝑄1(𝑧)𝑥 

+𝑄2(𝑧)𝑦 + 𝑆(𝑧),                                        (3.23) 

 

 where 𝑃(𝑧), 𝑄1(𝑧), 𝑄2(𝑧), and 𝑆(𝑧) are arbitrary 

functions. Also the metric (2.1) can be written as  

𝑑𝑠2 = 𝑑𝑡2 − Φ(𝑡)2e2𝜈(𝑥,𝑦)(𝑑𝑥2 + 𝑑𝑦2) −
(Φ(𝑡)𝜂(𝑥, 𝑦, 𝑧) + 𝜇(𝑧, 𝑡))2𝑑𝑧2.                 (3.24) 

 The average scale-factor 𝑎(𝑡), spatial volume 𝑉, 

Mean HP, and deceleration parameter are  

𝑉 = 𝑎3 = √−𝑔 = e2𝜈𝜂𝜇Φ3, 𝐻 =
Φ̇

Φ
+

�̇�

3𝜇
, 

                                          (3.25) 

𝑞 =
−𝜇[6𝜇Φ̇2 + 3𝜇ΦΦ̈ + 6ΦΦ̇�̇� + Φ2�̈�]

(3𝜇Φ̇ + Φ�̇�)
2 , 

                                          (3.26) 

 in which HPs in the directions of 𝑥, 𝑦, and 𝑧 axes 

are,  

𝐻1 = 𝐻2 =
Φ̇

Φ
, 𝐻3 =

Φ̇

Φ
+

�̇�

𝜇
 .            (3.27) 

 The cosmological parameters such as the scalar 

expansion 𝜃, and shear scalar 𝜎 are given by,  

𝜃 =
3Φ̇

Φ
+

�̇�

𝜇
, 𝜎 =

1

√3

�̇�

𝜇
.                       (3.28) 

 Using Equations (3.1) to (3.4), we have the 

expression for density as  

𝜌 =
−𝜙

8𝜋
[6

Φ̈

Φ
− (

�̇�

𝜇
)

2
+ 2

�̈�

𝜇
+

4Φ̇�̇�

Φ𝜇
− 3𝑝 +

 2𝜔 (
�̇�

𝜙
)

2

+
3�̈�

𝜙
+

�̇�

𝜙
(

3Φ̇

Φ
+

�̇�

𝜇
)].                       (3.29) 

 An addition singularity of infinite density occurs 

where (and if) e𝐵 = 0. Krolak et al [5], showed 

that the Big-Bang (BB) singularity at Φ = 0 in 

the 𝐾 = 0 subcase of IS solution is a naked strong 

curvature singularity. Therefore, the SSs are 

another counter example to the oldest and 

simplest formulation of the cosmic censorship 

hypothesis. In fact, Krolak et al [5] result shows 

that the SSs are not sufficiently generic from the 

point of view of the cosmic censorship paradigm. 

The shell-crossing singularity (the one at,  Φ𝑧 =
0 ), although naked as well, is not strong. Several 

other papers have been published in which the 

spherically symmetric limit of the 𝐴𝑧 ≠ 0 SSs 

(i.e. the Lemaitre-Tolman model) has been 

discussed as a testing ground for cosmic 

censorship [9]. 

    The computations of relevant tensors; for 

metric (3.24) gives,  
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𝑅 = 4 (
Φ̇

Φ
)

2

+ 4 (
Φ̈

Φ
) + 8

Φ̇�̇�

Φ𝜇
+ 2

�̈�

𝜇
+

           2
e−2𝜈

𝜂Φ2 [𝜂(𝜈𝑥𝑥 + 𝜈𝑦𝑦) + 𝜂𝑥𝑥 + 𝜂𝑦𝑦].  (3.30) 

 We consider the hyperbolic counterparts of these 

space-times even though they are of Bianchi 

type-III, ifwe take 𝛽1 = 𝛽2 = 0, 𝛼 =
𝐾

4
, and 𝛾 =

1, the Equation (3.20) becomes  

e−𝜈 = 1 +
𝐾

4
(𝑥2 + 𝑦2).                   (3.31) 

 Further simplifications may be introduced by 

coordinate transformations one of these if 𝛼 =
𝛽2 = 𝛾 = 0, and 𝛽1 = 1, then the Equation (3.23) 

becomes 𝜂 = e𝜈𝑥, so the metric (3.24) becomes,  

𝑑𝑠2 = 𝑑𝑡2 − [
Φ(𝑡)

1 +
𝐾

4
(𝑥2 + 𝑦2)

]

2

(𝑑𝑥2

+  𝑑𝑦2+ 𝑥2𝑑𝑧2).              (3.32) 

 Using the spatial transformation  

𝑥 = 𝑟𝑠𝑖𝑛𝜃, 𝑦 = 𝑟𝑐𝑜𝑠𝜃, 𝑧 = 𝜙. 

The metric (3.32) reduces to,  

𝑑𝑠2 = 𝑑𝑡2 − [
Φ(𝑡)

1 +
𝐾

4
𝑟2

]

2

(𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)),    

                                                                   (3.33) 

where 𝑟2 = 𝑥2 + 𝑦2, and the metric is group 

of 𝐺3. This form metric is similar to FLRW 

metric.  

 

(1) when 𝐾 = 0, (flat) the metric is Bianchi type-

I, and Bianchi type- VII0, 

(2)  when 𝐾 = +1, (closed) the metric is Bianchi 

type-IX,  

(3)   when 𝐾 = −1, (open) the metric is Bianchi 

type-V, and Bianchi type-VIIℎ,  

 Introducing complex variables for convenience  

𝜉 = 𝑥 + 𝑖𝑦, 𝜉̅ = 𝑥 − 𝑖𝑦, 

in which the Equation (3.19) becomes  

4e−2𝜈𝜈𝜉�̅� = −𝐾.                                (3.34) 

 Differentiating this by 𝜉 we obtain,  

(𝜈𝜉𝜉 − 𝜈𝜉
2)

�̅�
= 0, 

and hence without loss of generality, we take  

𝜈𝜉𝜉 − 𝜈𝜉
2 = 0.                                     (3.35) 

 This implies  

(e−𝜈)𝜉𝜉 = (e−𝜈)�̅��̅� = 0,                  (3.36) 

 since 𝜈, is real,  

e−𝜈 = 𝛼𝜉𝜉̅ + 𝛽1𝜉 + �̅�2𝜉̅ + 𝛾,         (3.37) 

 so by substitution in Equation (3.34) implies  

𝛼𝛾 − 𝛽1�̅�2 =
𝐾

4
,                                  (3.38) 

 if we take 𝛽1 = 𝛽2 = 0, 𝛼 =
𝐾

2
, and 𝛾 =

1

2
, the 

Equation (3.37) becomes  

e−𝜈 =
1

2
(1 + 𝐾𝜉𝜉̅).                           (3.39) 

 Now to determine the function 𝜂, from the field 

Equation (3.5) we have,  

(e−𝜈𝜂)𝜉𝜉 = (e−𝜈𝜂)�̅�𝜉 = 0.             (3.40) 

 Now from the field Equations (3.1), and (3.2), we 

have the solution  

e−𝜈𝜂 = 𝛼(𝑧)𝜉𝜉̅ + 𝛽1(𝑧)
𝜉+�̅�

2
+

                                  𝛽2(𝑧)
𝜉−�̅�

2𝑖
+ 𝛾(𝑧),           (3.41) 

 with the restriction as gives in Equation (3.21). 

Further simplifications may be introduced by 

coordinate transformations one of these if 𝛼 =
𝛽2 = 𝛾 = 0, and 𝛽1 = 1, then the Equation (3.41) 

becomes, 𝜂 =
𝜉+�̅�

2
e𝜈. Also the metric (2.1) can be 

written as  
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𝑑𝑠2 = 𝑑𝑡2 − [
Φ(𝑡)

1+
𝐾

4
𝜉�̅�

]

2

(𝑑𝜉𝑑𝜉̅ + (
𝜉+�̅�

2
)

2

𝑑𝑧2).                             

(3.42) 

 

This metric is a general axially symmetric space-

time. 

3. 2  THE SUBFAMILY 

  𝑨𝒛 ≠ 𝟎, (𝑯𝟏)𝒙𝒚 = 𝟎 

 This case gives useful information in 

astrophysics, and cosmology. From Equation 

(3.12), it is clear that 𝑢(𝑧, 𝑡) ≠ 0, hence we 

write,  

e𝐵 =
𝐴𝑧

𝑢(𝑧,𝑡)
.                                          (3.43) 

 Using Equation (3.43) in Equation (3.11), we get  

(e𝐴−𝐵𝐴𝑧)𝑡 = (e𝐴𝑢)𝑡 = 0.                          (3.44) 

 The solution of which can be given as,  

e𝐴 = Φ(𝑧, 𝑡)e𝜈(𝑥,𝑦,𝑧),                        (3.45) 

 where Φ(𝑧, 𝑡) =
1

𝑢
, it follows that (𝐻1)𝑥 =

(𝐻1)𝑦 = 0, so Equation (3.43) implies that  

e𝐵 = Φ(𝑧, 𝑡)𝐴𝑧.                                 (3.46) 

 The arbitrary factor dependent on 𝑧 can be 

introduced in e𝐵 by a transformation of the form 

𝑧 = 𝑓(𝑧′). This will simplify the limiting 

transition to the RW models. Thus,  

e𝐵 = ℎ(𝑧)Φ(𝑧, 𝑡)𝐴𝑧 = ℎ(𝑧)(Φ𝑧 + Φ𝜈𝑧).  

(3.47) 

 The evolution Equation for Φ gives  

2ΦΦ̈ + Φ̇2 + 2ΦΦ̇ (
�̇�

𝜙
) + Φ2 [

8𝜋𝑝

𝜙
+

𝜔

2
(

�̇�

𝜙
)

2

+

                                                  
�̈�

𝜙
] = −𝐾(𝑧),    (3.48) 

 The function 𝜈 satisfies  

e−2𝜈[𝜈𝑥𝑥 + 𝜈𝑦𝑦] − 𝐷2 = 𝐾(𝑧),  

(3.49) 

 where 𝐷 =
1

ℎ
. Following the procedure adopted 

by Szafron [14] discussed in [9]. we may write 

the solutions in the form  

e−𝜈 = 𝛼(𝑧)[𝑥2 + 𝑦2] + 𝛽1(𝑧)𝑥 + 𝛽2(𝑧)𝑦 𝛾(𝑧),  
(3.50) 

 with the restriction  

𝛽1
2 + 𝛽2

2 − 𝛼𝛾 =
−1

4
(𝐷2 + 𝐾(𝑧)).(3.51) 

 The first integral of the Equation (3.48), may be 

given by  

Φ̇2 =
𝑀

Φ
+ 𝐾(𝑧) −

1

Φ
∫ Φ̇

𝜕

𝜕𝑡
(Φ2) (

�̇�

𝜙
) 𝑑𝑡 −

1

3Φ
∫

𝜕

𝜕𝑡
(Φ3) [

8𝜋𝑝

𝜙
+

𝜔

2
(

�̇�

𝜙
)

2

+
�̈�

𝜙
] 𝑑𝑡.(3.52) 

 Now using conservation Equation (1.3) we get  

�̇� + (𝐻3 + 2𝐻1)(𝜌 + 2𝑝) = 0.(3.53) 

 If we further assume that the perfect fluid obeys 

the barotropic Equation of state of the form  

𝑝 = 𝜔𝜌, 0 ≤ 𝜔 ≤ 1, 

with the equation of state parameter 𝜔 as time-

independent. In this case, Equation (3.53) can be 

integrated for the energy density to yield  

𝜌 = (
1

𝑎
)

3(1+2𝜔)
.                                (3.54) 

 In this model, the BB is not simultaneous in the 

comoving, and synchronous time 𝑡. With this 𝑡, 

the BB is a process extended in time rather than a 

single event in space-time. 

The ISCM that could model our universe began 

with a BB a moment in time at which the scale 

factor 𝑎(𝑡) vanishes, and the geometry of the 

universe is singular. The singular nature of the 

BB is apparent from Equation (3.54 ). The 

densities of matter, and radiation are infinite 

when 𝑎 = 0 [9]. 

The BB occurred at every place in space at one 

moment in time. The notion of a geometry of 

spaceï¿½time breaks down at a singularity, 

along with the predictive power of the law of 

geometry, such as Einstein’s Equation As far as 

making predictions in physic, concerned, the 
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universe began at the BB. For this reason, the 

BB is conventionally assigned the time 𝑡 = 0. 

Also the metric (2.1) can be written as  

𝑑𝑠2 = 𝑑𝑡2 − Φ2e2𝜈(𝑑𝑥2 + 𝑑𝑦2) −

                           (ℎΦ𝐴𝑧)2𝑑𝑧2.                          (3.55) 

 The average scale-factor 𝑎(𝑡), spatial volume V, 

and Mean HP are  

𝑉 =  𝑎3 =  √−𝑔 =  e2𝜈 ℎ2 Φ2 (Φ𝑧 +  Φ 𝜈𝑧),  

                                                                    (3.56) 

𝐻 =  
Φ Φ𝑧

̇  +  Φ̇ (2 Φ𝑧 + 3 Φ 𝜈𝑧)

3 Φ  ( Φ𝑧 + 3 Φ 𝜈𝑧)
,            (3.57) 

 

in which HPs in the directions of x, y, and z axes 

are,  

𝐻1 =   𝐻2 =  
Φ̇

Φ
,   𝐻3 =  

Φ𝑧
̇  +  Φ̇  𝜈𝑧

Φ𝑧 +  Φ 𝜈𝑧
.       (3.58) 

The cosmological parameters such as the scalar 

expansion (θ), and shear scalar (σ) are given 

by,  

θ =  
Φ Φ𝑧

̇  +  Φ̇ (2 Φ𝑧 + 3 Φ 𝜈𝑧)

Φ  ( Φ𝑧 + 3 Φ 𝜈𝑧)
,            (3.59) 

σ =  
Φ̇  Φ𝑧 −   Φ Φ𝑧

̇

√3  Φ (Φ̇ +  Φ 𝜈𝑧)
,                              (3.60) 

 

From Equations (3.59) and (3.60), we obtain  

σ2

θ2
=   

(Φ̇  Φ𝑧 −   Φ Φ𝑧
̇ )

2

3  (Φ Φ𝑧
̇  +  Φ̇ (2 Φ𝑧 + 3 Φ 𝜈𝑧))

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.                       (3.61) 

Since, 
𝜎

𝜃
 is a non-zero constant the model does 

not approach to isotropy. 

For the model (3.55), and by using Equation 

(3.54), the energy density 𝜌 becomes  

𝜌 =  (
e−2𝜈

ℎ2 Φ2 ( Φ𝑧+3 Φ 𝜈𝑧) 
)

1+2ω 

 , 0  ω ≤ 1  (3.62) 

 

  The sign of one of them fixes the geometry of 

the 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 3-surfaces, and the type of 

evolutions are elliptic, parabolic, and hyperbolic. 

The sign of another function determines the 

geometry of the 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝑧 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  2-surfaces they quasi-spherical, 

quasi-plane, and quasi-hyperbolic models. Only 

the quasi-spherical model has been found useful 

in astrophysical cosmology, thus our results 

match with [10].  

 In the exact IS can be employed not only for 

studying the dynamics, and the geometry of the 

universe, but also to investigate the formation, 

and evolution of structures. 

4. CONCLUSION 

In this paper, we have considered that the ISC 
solutions with perfect fluid as the matter 
distribution. We can classify the solutions into 
two categories namely, (1) 𝐴𝑧 = 0, and (2) 𝐴𝑧 ≠
0. The first set of solutions are known as a 
quasi-spherical solution while the second class 
of solution is termed as a cylindrical type of 
solutions. 

   Two properties have already been mentioned, 

the lack of any symmetry in general, and the 

existence of the surfaces of constant curvature 

𝑡 = 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. In fact, the lack of symmetry 

was proved by Bonnor, Sulaiman, and 

Tomimura(1977) [3] for the Szekeres solutions, 

but since they assume 𝑝 = 0 of the Szafron 

space-times, it follows immediately that the 

latter has, in general, no symmetry either. Other 

properties in common are as follows, thus 

properties were discussed in [9]. 

   The Weyl tensor of the Szafron space-times 

has its magnetic part with respect to the velocity 

field of the source equal to zero (Szafron, and 

Collins 1979 [7], Barnes and Rowlingson 1989 

[1]), and is in general of Petrov type D (Szafron 

1977). It degenerates to zero in the FLRW limit 

only. 

   The slices 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 of these space-times 

are conformally flat (Berger, Eardley, and Olson 

1977 [2]). This indicates that the space-times are 

non-radiative in the sense of York (1972) [16]. 

   Note that the curvature of the xy-surfaces is a 

global constant only in the 𝐴𝑧 = 0 subfamily, and 

there it is equal to the curvature index of the 𝑡 =
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𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 slices in the resulting FLRW limit. In 

the 𝐴𝑧 ≠ 0 subfamily, the curvature of the xy-

surfaces is determined by Δ = 𝛽1
2 + 𝛽2

2 − 𝛼𝛾 and 

is independent of the curvature index of the 

FLRW limit, which is determined by 𝐾(𝑧). Both 

𝐾(𝑧), and Δ are only constant within each xy-

surface and can vary within 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 slice. 

The variation of 𝐾 over 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 slice has 

an interesting consequence: Ifobservers in 

different spatial locations of the Szafron 𝐴𝑧 ≠ 0 

Universe are trying to approximate it by FLRW 

models, then each of them may choose a different 

FLRW model. Even the sign of 𝐾 is not a global 

property of a general Universe. Its global 

constancy is a peculiarity of the FLRW class. 

   The Szafron space-times trivialize: those with 

𝐴𝑧 ≠ 0 become FLRW, and those with 𝐴𝑧 = 0 

acquire either FLRW or K-S geometry or the 

plane and hyperbolic counterparts of the latter 

(Spero and Szafron 1978 [13]). 
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