
PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

38

DATA SYNCHRONIZATION IN APPLICATION SOFTWARE

L. N. CHAVALI, P. N. OJHA AND C. RAM LOHITH

Technology Practitioners and Consultants, Hyderabad

Email: lnchavali@yahoo.com

ABSTRACT
It is a well known fact that the data in database is bound to have changes with the passage of time as it is designed for
applications in real world. As world changes day by day, it is challenging to handle the changes in database and to
transport them to different target data stores. In application software under discussion in this paper, these changes are
being transported to target data store by ETL (Extract Transform Load) from State Data Centre (SDC) to National Data
Centre (NDC) and by Customized Synchronization (Sync) framework using stored procedures from offline locations to
SDC. The primary focus of this paper is on Customized Sync which is implemented as a multi-threaded sync server that
will synchronize data to and from different offline servers to SDC in a transparent manner to the users.

Keywords: synchronization, blackout, thread, offline

INTRODUCTION

Communication topology and propagation
strategy are two vital aspects of data
synchronization. ‘Communication topology’
defines the pattern of communications among
systems /or nodes whereas ‘Propagation
strategy’ defines how frequently system /or
nodes synchronize with one another [2]. The
topologies range from central master, ad-hoc
peer-to-peer, hierarchical etc. The propagation
strategies vary from eager to lazy strategies.
Eager strategy may help updating the data
immediately while the update propagation may
be delayed in lazy strategy. The eager may
minimize or reduce the risk of conflicts in
terms of stale reads and write conflicts
whereas resolution is required to address these
conflicts in lazy strategy because of delay in
communication and of large write-logs.
However, lazy propagation offers an
advantage that the systems can be operated in
a disconnected state.

There are many methods through which the
data synchronization can happen. Some of
them may include [3]: -

1. Trigger method – Insert, delete and
modify triggers are used to sync data by
activating triggers.

2. Log Analysis method – It is nothing but
analysing the information of the database
log to capture changes in sequence of
synchronization objects.

3. Time Stamp based method – A method
where in every table of the application has
a timestamp field to record the
modification time of each table.

4. Trigger and Log Table method – This is
closer to realizing real time database
synchronization by employing web
services with event driven mechanism.

The rules to resolve conflicts may be domain
independent or may depend on application
semantics i.e. data driven reconciliation in
which systems can trigger reconciliation often
enough to avoid conflicts by using application-
specific knowledge. If the users decide to
trigger manual reconciliation, it is likely to
increase delays because of volume of data and
therefore may result in increase in conflict
rates. However, the chief advantage of manual
reconciliation is control and allows user to
synchronize the data as and when needed.

The tools like Google Gears is an open source
browser extension that lets developers create
web applications that can run offline.
Nevertheless, the goal of Gears is not just to
enable offline application, but to bridge the
gap between web application and desktop
application [7]. The popular utility like rsync
which is widely deployed on UNIX systems is
used primarily for synchronizing files and
directories from one location to another mostly
in backing up systems [8].

There are many proven commercial
frameworks that are available in the market as
of today. Some of them are described below: -

1. Microsoft Sync Framework
It is a data synchronization platform from
Microsoft that can be used to synchronize data
across multiple data stores. Sync framework
can be used for offline access to data, by
working against a cached set of data and

mailto:lnchavali@yahoo.com

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

39

submitting the changes to a master database in
a batch, as well as to synchronize changes to a
data source across all consumers
(publish/subscribe sync) and peer-to-peer
synchronization [1] of multiple data sources.
Sync framework features built-in capabilities
for conflict detection such as changes to the
data that has already been updated, and can
flag them for manual inspection or use defined
policies to try to resolve the conflict. There is
no unique way or unanimously agreed method
for data synchronization. This task differs
from case to case, and even data
synchronizations that should be simple at first
glance can be complicated, due to the
complexity of data structures. The
implementations of data synchronization are
rarely optimal [10].

2. Open Sync Framework
OpenSync is a synchronization framework that
is platform and distribution independent. It
consists of a powerful sync-engine and several
plug-ins that can be used to connect to devices.
OpenSync is very flexible and capable of
synchronizing any type of data, including
contacts, calendar, tasks, notes and files
(https://www.openhub.net/p/opensync).
OpenSync is a successor project of MultiSync.
OpenSync's main and most practical goal is to
create a solution to synchronize PIM (Personal
Information Management - address book
contacts, calendar events and tasks, personal
notes, etc.) data between mobile devices like
mobile phones, PDAs (Personal Digital
Assistant), desktop computer PIM tools and
services [4]. SymmetricDS
(https://www.symmetricds.org/doc) is open
source software for database and file
synchronization, with support for multi-master
replication, filtered synchronization, and
transformation. It uses web and database
technologies to replicate change data as a
scheduled or near real-time operation, and it
includes an initial load feature for full data
loads. The software was designed to scale for a
large number of nodes, work across low-
bandwidth connections, and withstand periods
of network outage.

3. Oracle GoldenGate Replication
Framework

GoldenGate can synchronize two
heterogeneous databases, by reading the real-
time history of all transactional changes of the
source database. The delta is then sent over to
the other database, again in real-time. In
technical language, this is called Change Data
Capture (CDC). Simplicity is the feature of
killer applications; GoldenGate guarantees
transactional integrity when copying between
source and target databases. With the simple
deployment of GoldenGate between databases,
one can build a High Available i.e. redundant
architecture with each database holding
accurate copies of each other's data. Most
importantly, GoldenGate permits active-active
database replication. Oracle GoldenGate
guarantees that even in an unstable
environment where networks and host servers
occasionally drop out, transactions will never
be missed or skipped [5].

There are many off-the-shelf products like
Aspera Sync from IBM
(https://www.asperasoft.com) and Attunity
(https://www.attunity.com/data-replication-
tool/) for replication or synchronization of
data.

4. Customized Sync framework
In applications, any data that is entered at
source (i.e. offline) is stored at source’s server
and this server in turn will communicate to
target server hosted at data center for data
synchronization over internet/SWAN/intranet
links. However, the data exchange over
internet between source and target will take
place through Secure Socket Layer (SSL). The
data will be synchronized between server at
State Data Centre (SDC) and server at source
without interrupting user operations.

The synchronization in applications under
discussion is designed for MySQL / MSSQL
database server at SDC and MySQL as offline
server at remote locations. The sync server is
built using Java Development Kit (JDK
version 6.0 or above), and the databases at
both ends should be running for Sync to
operate. The database at SDC is configured for
row level lock only. Fig 1 given below briefly
depicts the sync framework and the functional
flow of synchronization

.

https://www.openhub.net/p/opensync
https://www.asperasoft.com/
https://www.attunity.com/data-replication-tool/
https://www.attunity.com/data-replication-tool/

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

40

The table 1 describes the key feature comparison of custom sync with that of commercially available
off-the-shelf products.

Table 1: Feature Comparison of different sync models

Key feature Microsoft
Sync

Oracle
GoldenGate

Open
sync

Custom
Sync

Synchronize by using an n-tier or service-
oriented architecture Yes Yes Yes No

Supports heterogeneous databases Yes Yes Yes Yes
Incremental change tracking Yes Yes Yes Yes
Conflict detection and resolution Yes Yes Yes Yes
Easily create data views on the client (UI) Yes Yes No No
Automatically initialize schema and data Yes Yes No Yes
Supports large data sets Yes Yes No Yes
Query processor is locally available Yes Yes Yes No
Use on devices Yes Yes Yes No

METHODOLOGY

1) Synchronization Model in Applications
In custom sync framework, the
synchronization interval must be configured to
sync the data between online resources and
offline resources. If resource at the both ends
is the database, then the data transmission is
completed before purging the data from the
offline database; and before reaching the
database size limit.

Data Synchronization
Master data synchronization is done on the
basis of client / server model. The data always
moves from the server to the client, and
therefore the synchronization is unidirectional.
The data change i.e. incremental changes in
masters is synchronized with offline database
by stored procedures.

The custom sync framework supports two fold
approaches viz.

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

41

a) Synchronize the metadata of online database
i.e. database at SDC with that of offline
database.
b) Bi-directional synchronization of the record
or transactional data.

Method 1 – offline and online transmission of
data over http links.
Method 2 – offline and online transmission of
data over user socket.

The approach in this framework has a few
limitations as briefly explained below.
1. When network connectivity is available,

offline application is barred from
operation.

2. When connection to the SDC server is re-
established, user will be notified about the
blackout period (i.e. no operation from
online or offline) during which the
background utility will synchronize the
metadata, and subsequently, the record or
transactional data will be synchronized.
During the metadata synchronization, user
is not allowed for any data submission
from the application.

 The given below figure illustrates various
transition states of sync server.

From Fig 2, the transition from offline to
online happen only by having valid network
connection, declaring blackout and performing
data transfer. The transition from online to
offline happened as and when there is a loss of
network connectivity. The user operates the
offline application and all transactional data
will be put in offline database. It is to be noted
that the metadata is synchronized only after
declaring the ‘blackout’ period during which
the offline users cannot operate the application
from offline or online.

2) Sync Server Implementation

The sync application is built as multi-threaded
server which is run from SDC. It executes
various procedures for synchronizing the data
between SDC and offline server. Thread is a
path of execution in the process. Threads allow
multiple executions to take place in the same
process environment, to a large degree
independent of one another. The main reason
for having threads in sync application is that
multiple offline stations/servers are required to
be synchronized for data. Therefore, in order
to perform the data exchange with many
offline servers simultaneously from SDC, the
synchronization tasks are decomposed into
multiple threads which run in parallel / quasi-

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

42

parallel to perform the tasks. When a
multithreaded process is run on a single-CPU
system, thread scheduling is one dimensional
and CPU should decide in which thread it
should run next. It takes turns to run multiple
threads. The CPU switches rapidly back and
forth among the threads providing the illusion
that the threads are running in parallel. When
threads are scheduled on multiple processors,
scheduling is two dimensional as the scheduler
has to decide the thread to run on which
processor there by making it more
complicated. In multiprocessor scenario, the

threads run simultaneously on virtual
processors associate with each CPU. The
virtual processors can be taken back by kernel
in order to assign them to other needy
processes or threads. All threads in the process
share resources of the process like open files,
signals etc. It is not possible to have
protection between threads in the process and
it may not be necessary as threads are expected
to collaborate and to work together to perform
the tasks.

The sync server in software applications is organized as shown in Figure 3.

.
Sync server will have two threads per offline
station apart from three other threads meant
for logging, console and the main. The
‘metadata sync’ thread checks the metadata at
SDC and at offline for a module and
synchronize offline metadata with that of
SDC. ‘record sync’ thread exchange all such
records whose meta flags are verified by
‘metadata sync’ thread in both directions.
The pseudo code of the sync server is given
below:

main ()
{

Establish Server Socket at port 19218;
If remote station code in host list == "true"
&& thread is not running)
{
//start the thread
while (1 == 1)
{
Start metadata sync thread; // may be referred
in program as SDC to offline
Start record sync thread; // referred as offline
to SDC
Establish the connection from Server DB at
SDC;
Establish the connection from offline DB;

if (connection success from both DB)
{
/*Sync DB at SDC to offline DB */

 If

(RECORD_SYNC_ON = NULL)
{
Fetch Records of Server DB at SDC that are
yet to be synchronized;
Convert the Records into XML format;

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

43

Insert XML records into offline DB;
Update Sync Flags at offline and SDC;
Commit;
}
 /* Sync offline DB to Server DB at SDC */
If (RECORD_SYNC_ON = NULL)
{
Fetch Records of offline DB that are yet to be
synchronized;
Convert the Records into XML format;
Insert XML records into Server DB at SDC;
Update Sync Flags at offline and SDC;
Commit;
}
 } /* end of if - connection loop */
 } /* end of while loop */
} /* end of if – thread */
Else no need to sync;
} /* end of program*/

The XML files which are created at run time
for data transfer are deleted automatically at
the end of the data transfer.

OBSERVATIONS

Deadlocks
Deadlock occurs when a group of threads have
been granted exclusive access to some
resources, and each one wants yet another
resource that is being used by other thread in
the group. All of them are blocked and none
will ever run again.
It has been observed that whenever a new user
is assigned in an offline application through
Administrator, the new user is not visible in
offline application, but it has shown up the
previous user in offline. However, the new
user works fine in online mode.

The above user problem is explained in Fig 4
to understand the deadlock scenario. This has
been presented here for illustration purpose
only.
In Fig 4, the sync flags of SDC and offline
servers are allocated to metadata sync thread,
data record to be updated is allocated to record
sync thread and the record in cache is allocated
to SQL procedure. The procedure is requesting
for access to update the sync flags post data
exchange whereas this is locked by metadata
sync thread and thereby creating a deadlock.

If procedure generates an exception, then the
user threads will reschedule the data exchange
after the schedule interval. However, if the
procedure throws an exception again, then
there is every possibility of a deadlock
situation created.

There may be many reasons for a deadlock;
nonetheless some well-known reasons for
deadlock are listed below: -
1. Exhaustion of the thread table.
2. Limitation on the number of open files and

finite swap space.
3. Contention for the shared resources.
Most of the errors observed in error table 2
may be indirectly related to contention of
resources
Maintaining the data dependency across
threads is vital. Disambiguating the addresses
accessed by different threads, invalidating
stale state in caches, making the state of a
committing thread visible to all other threads,
discarding incorrect state when a thread is
squashed, and managing the speculative state
of multiple threads in a single processor are
important in speculative multithreading [6].

RESULT AND DISCUSSION

The configuration of the database server in the
lab where sync is deployed and tested is Quad
core and 20 GB RAM. Table 2 briefly lists out
the errors that have been logged by Sync
Server.

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

44

Table 2: Errors in sync log

S.No Error type Description

1 Procedure does
not exist

Data sync from SDC to offline server A unable to locate the PROCEDURE
"offline_db_sync_proc.PR_DS_UPDATE_PROP_EXT_SYNC_FLAG”.

2 Duplicate Entry Data sync from SDC to offline server B Duplicate entry
'81121500213001501-99' for key 'PRIMARY'

3 Deadlock on
locked resource

Data sync from DC to offline server A Transaction was deadlocked.

4 Station out of
sink

Station C stop to sync automatically.

5 No operation
allowed

Data sync from SDC to offline server D for Master update, user update and
data entry. Connection was implicitly closed by the driver.

1. Performance Statistics
It is evident from Fig 4 that the memory
consumption of db and sync servers is high,
thereby forcing a restart of sync server. There
is a marginal change in memory consumption
and the number of threads as seen from Fig 5
and 6. Therefore, it can be concluded that only
a few transactional activities are taking place.
Out of all nine offline servers started, four
offline servers were shut down for some

reason during test and two offline servers out
of the four were re-started. The number of
threads at start up is 21. However, the base
thread count remains the same despite
reduction in the number of offline servers. On
the contrary, it has been observed that the
thread count is varying over the base count
because of offline server’s unstable
connectivity.

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

45

2. Query Response
The sync framework in application software
replicates the data on transactional basis.
There are 25 classes of transactions in the
application software under test. Whenever
synchronization happens for a specific
transaction, it seems that all the related table
data will be exchanged. Any new transactions
outside the window of the existing set of
transactions may not be synchronized.

The response times of five procedures that
have been captured at two different instances
during test are shown in Fig 7. The graph was
generated with SQL profiler of Microsoft. It
can be observed that the response time varies
from 1.3 sec to 20 sec with few records in the
database in the test lab. The expected user
response time as per requirements at peak load
is 3 sec. The query response times are based
on the current execution plan. The same
execution plan will deteriorate the response
times for higher workload or higher volume of
data.

3. Root Cause Analysis

It has been observed that in some of the
transactions, the long running queries are
holding the database locks thereby causing
other resources waiting in the queue. This has
resulted in longer transaction commits to the
database.

LIKE operator is being used widely in
procedures to generate the primary key for
some of the tables, which has caused full table
scan. Due to this, the performance has been
impacted. As the procedures are re-used by
other modules, it has resulted in long wait,
lock wait and time out of the transactions.

To alleviate this problem, the number
generation logic of the primary key has been
changed and the execution times of stored
procedure have improved by many folds. The
concurrency is controlled by modifying the
throttling parameter.

PRAJÑĀ - Journal of Pure and Applied Sciences Vol. 26 : 38 – 46 (2018)
ISSN 0975 - 2595

46

CONCLUSIONS

It is planned by design that the offline
application is a contingency arrangement for
no online access for any reason. In the custom
model discussed in this paper, the tight
coupling between offline and online is a cause
of concern. Loss of data, different response
times to the same transaction from different
locations, performance impact on database due
encryption or multi-lingual adaption are some
of the bottlenecks which are yet to be
addressed in the solution, possibly would be
addressed in future releases of synchronization
software. The customized framework is
tailored to the customer requirements and will
scale up easily as more and more locations are
added. This framework is currently being used
in one of the mission mode projects. The
computing paradigm is slowly shifting from
centralized to decentralized as evident with the
advent of blockchain solutions. The emergence
of distributed technologies has given birth to
new ways of synchronizing data sets and files
which is agnostic to the underlying transport.
A new protocol viz. DAT is designed for
syncing folders of data, even if they are large
or changing constantly. DAT is a dataset
synchronization protocol that supports public
or private decentralized network and use
public key cryptography for encryption [9].
The sync methods in future may become more
decentralized and may replace the existing
methods due to factors such as cost, vendor
lock-in, speed, privacy and centralizatio.

REFERENCES

[1] Joe Kunk (2012): Database Synchronization

with Microsoft Sync Framework, Visual
Studio magazine, 34-38

[2] Mike Dahlin, Aslan Brooke, Muralidhar
Narasimhan, Bruce Porter (2000): Database
synchronization for distributed simulation,
European Simulation Interoperability
Workshop, pp 1-7

[3] A.F. Cardenas (1987): Heterogeneous
distributed database management. The HD-
DBMS, Proceeding of IEEE Volume
75(5):588 - 600

[4] Hui Ling Du, Benjamin C. Pierce (2009):
Universal Data Synchronizer for Personal
Calendars, Conference Proceedings, Website:
https://pdfs.semanticscholar.org/

[5] Oracle Corporation (2018): Oracle Fusion
Middleware Using Oracle GoldenGate for
Heterogeneous Databases, 12c (12.3.0.1),
Oracle Press USA, pp 15.1-22.4

[6] Luis Ceze, James Tuck, Calin Cas, Josep
Torrellas. (2006): Disambiguation of
Speculative Threads in Multiprocessors,
IEEE 1063-6897/06

[7] Tushar Mohate, Vijay Rasal, Anil Panchal,
Sarita Ambadekar (2015): Internet Data
Synchronization Tool, IJCST Volume 3
Issue 2

[8] Salekul Islam and Mohammad Amanul
Islam (2014): A Web-based Data Backup,
Synchronization and System Administration,
DOI: 10.5815/ijcnis.2014.09.01, Website:
http://www.mecs-press.org/

[9] Maxwell Ogden, Karissa McKelvey,
Mathias Buus Madsen (2017): Home page
for Code for Science & Society. Retrieved
from Distributed Dataset Synchronization
and Versioning, Website:
https://codeforscience.org

[10] Andrej Gajdos (2016): Home page for
toptalTM, Retrieved from Guide to Data
Synchronization in Microsoft SQL, toptalTM,
Website: https://www.toptal.com/sql/

https://www.researchgate.net/profile/AF_Cardenas
https://pdfs.semanticscholar.org/
http://www.mecs-press.org/

