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ABSTRACT  

 
In this paper, a mathematical model is proposed to study the effect of exotic lion population on prey-predator system consisting 

of native herbivore population and native leopard population with special reference to Kuno Wildlife Sanctuary in India. The 

model includes three state variables viz; density of herbivore population, density of leopard population and density of exotic 

lion population. Stability analysis of all the feasible equilibrium points of the models is carried out. We concluded that interior 

equilibrium point becomes more stable if inter specific interference coefficient due to exotic lion species as well as constant 

recruitment rate of lion population decreased. It is also pointed out that the recruitment rate of Asiatic lion plays as a critical 

role in the dynamical behaviour of the system. Finally numerical simulation is carried out to support the analytical results of 

the models. 
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INTRODUCTION 

The dynamic relationship between predators and 

their prey has long been and will continue to be 

one of the dominant themes in both ecology and 

mathematical ecology due to its universal 

existence and importance [1-7]. Many authors 

have studied effect of exotic predator on native 

prey species using mathematical models [8-10]. 

The interesting study of realistic mathematical 

models in theoretical ecology is a very good 

reflection of their use in helping to understand the 

dynamic process involved and in making 

practical prediction.  

It has been noticed in the Gir National Park 

located in Gujrat in India that the population of 

lions and have attained an equilibrium level and 

the expansion limits have been reached. There are 

large scale deaths in the lion population annually 

because of overcrowding increasing and 

intraspecific competition. Asiatic lion prides 

require large territories but there is limited space 

at Gir wildlife sanctuary, which is boxed in on all 

sides by heavy human habitation.          

Kuno Wildlife Sanctuary or Palpur-Kuno 

Wildlife Sanctuary (between latitudes of 25°30’- 

25°53’N & longitude of 77°07’-77°26’E) lies in 

the Sheopur district of north western Madhya 

Pradesh, a state in central India [11]. An area of 

344.686 square kilometers was set aside as a  

 

 

 

Wildlife Sanctuary in 1981. This park is home to 

many species of wild animals including wolves,  

monkeys, leopards, nilgai  and possibly a few 

remaining Bengal Tigers.  

Government of India planned to shift the Asiatic 

lion from Gir National Park to other places. The 

Kuno Wildlife Sanctuary was selected as 

the reintroduction site for the endangered Asiatic 

lion because it is the former range of the lions 

before it was hunted into extinction in about 

1873. Currently the Asiatic lion reintroduction 

project is underway. The lions are to be 

reintroduced from Gir Wildlife Sanctuary in the 

neighboring Indian state of Gujarat where they 

are currently overpopulated. The reintroduction 

project of Asiatic lion to other wildlife sanctuary 

such as Kuno National Park, requires quantitative 

investigation to predict the future scenario of the 

Kuno National Park with respect to survival or 

extinction of both native and exotic populations. 

In view of this the main purpose of this paper is 

to construct a model to study the effect of exotic 

species (Asiatic lion) on the growth dynamics of 

native prey (herbivore) and native predator 

leopard species. 

 

 
BASIC ASSUMPTIONS AND 

MATHEMATICAL MODEL 

Let 𝑥(𝑡) denotes the density of herbivore 

population, 𝑦(𝑡) denotes the density of leopard 

population and 𝑧(𝑡) denotes the density of exotic 

lion (Asiatic) population. It is assumed that at 

present the Asiatic lion is exotic to the habitat 
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                                                                                48 

(Kuno National Park).  It is also assumed that the 

herbivore population has a logistic growth rate, 

linear interaction with leopard population on 

account of exotic lion interference and type of 

interaction considered in the model with exotic 

lion population is taken from [12-13]. It is a well-

known fact that a lion does not kill the prey if it 

is not hungry. It will primarily kill feed, therefore, 

the predation term in the equation describing lion 

dynamics will depend on the prey and predator 

densities, as well as Type II functional response. 

We assume that 𝑟 and 𝑘 are the growth rate and 

the carrying capacity of herbivore population 

respectively. 𝑑1 is death rate of leopard 

population. 𝑑2 is the death rate of exotic lion 

population. 𝑚 is the constant recruitment rate of 

Asiatic lion (exotic) under the reintroduction 

project. 𝑎 is the predation rate of herbivore 

population by lion population. 𝑏 is the predation 

rate of herbivore population by leopard 

population. 𝑒1 and 𝑒2 are conversion efficiencies 

of native leopard species and exotic lion species. 

𝑓 is the decay rate of leopard species due to 

predation by lion species. 𝑐 is the interspecific 

interference coefficient due to exotic lion species. 

ℎ is the intraspecific interference coefficient due 

to exotic lion species, which is determined by the 

population size of the exotic lion. In view of the 

above, the resultant system dynamics is governed 

by the following system of differential equations: 

Model 1 (With exotic species) 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) − 𝑎𝑥𝑧 −

𝑏𝑥𝑦

1 + 𝑐𝑧
 ,           (2.1) 

𝑑𝑦

𝑑𝑡
=

𝑏𝑒1𝑥𝑦

1 + 𝑐𝑧
− 𝑑1𝑦 − 𝑓𝑦𝑧 ,                        (2.2) 

𝑑𝑧

𝑑𝑡
= 𝑚 +

𝑎𝑒2𝑥𝑧

1 + ℎ𝑧
− 𝑑2𝑧 ,                           (2.3)  

with initial condition as 𝑥(0) ≥ 0, 𝑦(0) ≥ 0 and 

𝑧(0) ≥ 0.  

Where  𝑟, 𝑘, 𝑎, 𝑏, 𝑐, 𝑓, ℎ,𝑚, 𝑑1, 𝑑2, 𝑒1, 𝑒2  are 

positive constants.  

In the absence of exotic lion species the above 

system (2.1)-(2.3) is governed by the following 

system of differential equations: 

Model 2 (Without exotic species) 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) − 𝑏𝑥𝑦 ,                           (2.4) 

𝑑𝑦

𝑑𝑡
= 𝑏𝑒1𝑥𝑦 − 𝑑1𝑦 ,                                   (2.5) 

with non-negative initial condition as 𝑥(0) ≥ 0 

and 𝑦(0) ≥ 0.   
EQUILLIBRIA OF THE MODELS 1 AND 2 

In this section, we analyze the system of 

equations (2.4)-(2.5) under the initial conditions. 

We find all the possible feasible equillibria of the 

system of equations (2.4)-(2.5). The system has 

three feasible equillibria, namely 

(i) Trivial equilibrium point 𝐸𝑇 ≡ (0,0). 
(ii) Axial equilibrium point 𝐸𝐴 ≡ (𝑘, 0). 
(iii) Interior Equilibrium point 𝐸𝑃 ≡

(𝑥#, 𝑦#).  
Where,  

𝑥# =
𝑑1

𝑏𝑒1
, 𝑦# =

𝑟(𝑏𝑒1𝑘 − 𝑑1)

𝑏2𝑒1𝑘
. 

Equilibrium point 𝐸𝑃 exists if  𝑏𝑒1𝑘 > 𝑑1.  
We now analyze the system of equations (2.1)-

(2.3) under the initial conditions. We find all the 

possible feasible equillibria of the system of 

equations (2.1)-(2.3). The system has two 

feasible equillibria, namely  

(i) Boundary equilibrium point 𝐸𝐵𝑒
≡

(�̃�, 0, �̃�).  
Where,  

�̃� =
(1 + ℎ�̃�)(𝑑2�̃� − 𝑚)

𝑎𝑒2�̃�
, 

�̃� =
𝑟(𝛽1 + 𝑚ℎ) + √𝑟2(𝛽1 + 𝑚ℎ)2 + 4𝑚𝑟𝛽2

2𝛽2
, 

𝛽1 = 𝑎𝑒2𝑘 − 𝑑2, 𝛽2 = 𝑎2𝑒2𝑘 + ℎ𝑟𝑑2. 
Equilibrium point 𝐸𝐵𝑒

 exist if  𝑑2�̃� > 𝑚 i.e. 𝑚 <

𝑚1
∗ .  

Where, 

𝑚1
∗ =

𝑟𝑑2

𝑎
 

(ii) Interior Equilibrium point 𝐸𝑃𝑒
≡

(𝑥∗, 𝑦∗, 𝑧∗). 
Where,   

𝑧∗ =
𝛽3𝑥

∗ − 𝛽4

𝛽5 + 𝛽6𝑥
∗
= 𝑔(𝑥∗), 

𝑦∗

=
[𝑟𝛽7 − 𝛽8𝑔(𝑥∗) − 𝛽9𝑔

2(𝑥∗)](1 + 𝑐𝑔(𝑥∗))

𝑏2𝑒1𝑘
, 

𝛽3 = 𝑏ℎ𝑑2𝑒1, 𝛽4 = ℎ𝑑1𝑑2 + 𝑐𝑓𝑚,  
𝛽5 = 𝑐ℎ𝑑1𝑑2 + 𝑐𝑓ℎ𝑚 + 𝑓(ℎ − 𝑐)𝑑2 

𝛽6 = 𝑎𝑐𝑓𝑒2, 𝛽7 = 𝑏𝑒1𝑘 − 𝑑1,  
𝛽8 = 𝑓𝑟 + 𝑐𝑑1𝑟 + 𝑎𝑏𝑒1𝑘, 𝛽9 = 𝑐𝑓𝑟 

𝑥∗ is the root of the equation 

𝐺1𝑥
∗3 + 𝐺2𝑥

∗2 + 𝐺3𝑥
∗ + 𝐺4 = 0. 
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Where, 

𝐺1 = 𝑏𝑒1𝛽6
2,  

𝐺2 = 2𝑏𝑒1𝛽5𝛽6 − 𝑑1𝛽6
2 − 𝛽3𝛽6𝛽10 − 𝑐𝑓𝛽3

2, 
𝐺3 = 𝑏𝑒1𝛽5

2 − 2𝑑1𝛽5𝛽6 − 𝛽3𝛽5𝛽10 + 𝛽4𝛽6𝛽10

+ 2𝑐𝑓𝛽3𝛽4, 
𝐺4 = 𝛽4𝛽5𝛽10 − 𝑐𝑓𝛽4

2 − 𝑑1𝛽5
2, 𝛽10 = 𝑓 + 𝑐𝑑1. 

Hence unique root 𝑥∗  is positive if 𝐺2 > 0 and  

𝐺4 < 0. 
Therefore equilibrium point 𝐸𝑃𝑒

≡ (𝑥∗, 𝑦∗, 𝑧∗) 

exists if 

𝛽3𝑥
∗ > 𝛽4, ℎ > 𝑐, 𝑟𝛽7 > 𝛽8𝑔(𝑥∗) + 𝛽9𝑔

2(𝑥∗),  
2𝑏𝑒1𝛽5𝛽6 > 𝑑1𝛽6

2 + 𝛽3𝛽6𝛽10 + 𝑐𝑓𝛽3
2, 

𝑐𝑓𝛽4
2 + 𝑑1𝛽5

2 > 𝛽4𝛽5𝛽10. 
BOUNDEDNESS OF THE SOLUTIONS OF 

THE MODELS 1 AND 2 

Lemma 4.1 All the solutions of system of 

equations (2.4)-(2.5) with the positive initial 

condition are uniformly bounded within the 

region Ω𝟏.   
Where,    

Ω𝟏 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 𝑘, 0 ≤ 𝑒1𝑥 + 𝑦

≤
2𝑒1𝑘𝑟

𝜃
, 𝜃 = 𝑚𝑖𝑛(𝑟, 𝑑1)} 

for any 𝜃 > 0 is a region of attraction. 

Lemma 4.2 All the solutions of system (2.1)-

(2.3) with the positive initial condition are 

uniformly bounded within the region Ω𝟐.   
Where, 

Ω𝟐 = {(𝑥, 𝑦, 𝑧) ∶ 0 ≤ 𝑥 ≤ 𝑘, 0 ≤ 𝑒1𝑥 + 𝑦

≤
2𝑒1𝑘𝑟

𝜃
, 0 ≤ 𝑧

≤
𝑚

𝑑2 − 𝑎𝑘𝑒2
, 𝜃

= 𝑚𝑖𝑛(𝑟, 𝑑1), 𝑑2 > 𝑎𝑘𝑒2} 

for any 𝜃 > 0 is a region of attraction. 

DYNAMICAL BEHAVIOUR OF THE 

MODELS 1 AND 2 
In the previous section, we observed that the 

system of equations (2.4)-(2.5) have three 

feasible equilibria 𝐸𝑇 , 𝐸𝐴 and 𝐸𝑃. We will now 

study the dynamical behaviour of the system 

about all the three feasible equilibria.  

(i) The variational matrix for the system of 

equations (2.4)-(2.5) evaluated at 𝐸𝑇 is 

𝐽𝐸𝑇
≡ 𝐽(0,0) = [

𝑟 0
0 −𝑑1

] . 

The eigen values of the characteristic equation of 

𝐽𝐸𝑇
 are 𝜆1 = 𝑟 and 𝜆2 = −𝑑1. It is seen from 

these eigen values that equilibrium point 𝐸𝑇 is 

unstable. 

(ii) The variational matrix for the system of 

equations (2.4)-(2.5) evaluated at 𝐸𝐴 is 

𝐽𝐸𝐴
≡ 𝐽(𝑘, 0) = [

−𝑟 −𝑏𝑘
0 𝑏𝑘𝑒1 − 𝑑1

] . 

The eigen values of the characteristic equation of  

𝐽𝐸𝐴
 are 𝜆1 = −𝑟 and 𝜆2 = 𝑏𝑘𝑒1 − 𝑑1. It is seen 

from these eigen values that equilibrium point 𝐸𝐴 

is stable provided 𝑏𝑘𝑒1 < 𝑑1.  
Remark 5.1 :- It may be observed from the 

stability condition of 𝐸𝐴 that herbivore species 

will survive and leopard species will tend to 

extinction if the product of predation rate of 

leopard population due to predation of herbivore 

population by leopard population, conversion 

efficiency of leopard species and carrying 

capacity of herbivore population is less than 

death  rate of leopard species.  

(iii) The variational matrix for the system of 

equations (2.4)-(2.5) evaluated at 𝐸𝑃 is 

𝐽𝐸𝑃
≡ 𝐽(𝑥#, 𝑦#) = [

−𝑟𝑥#

𝑘
−𝑏𝑥#

𝑏𝑒1𝑦
# 0

] . 

The characteristic equation for variational matrix 

𝐽𝐸𝑃
 is given by 

𝜆2 + 𝐵1𝜆 + 𝐵2 = 0.                                     (5.1) 

Where, 

𝐵1 =
𝑟𝑥#

𝑘
, 𝐵2 = 𝑏2𝑒1𝑥

#𝑦#. 

Since 𝐵1 > 0 and 𝐵2 > 0. Therefore using 

Routh-Hurwitz criteria all the roots of equation 

(5.1) are negative or have negative real parts. 

Hence equilibrium point 𝐸𝑃 is locally 

asymptotically stable. 

Remark 5.2:- It may be observed from the 

stability condition of 𝐸𝑃 that herbivore species 

and leopard species will survive if the product of 

predation rate of leopard population due to 

predation of herbivore population by leopard 

population, conversion efficiency of leopard 

species and carrying capacity of herbivore 

population is greater than death  rate of leopard 

species. We also concluded that if equilibrium 

point 𝐸𝑃 exists then equilibrium point 𝐸𝐴 is 

unstable.  

In the previous section, we observed that the 

system of equations (2.1)-(2.3) have two feasible 
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equilibria 𝐸𝐵𝑒
 and 𝐸𝑃𝑒

 . We will now study the 

dynamical behaviour of the system about all the 

three feasible equilibria. 

(i) The variational matrix for the system of 

equations (2.1)-(2.3) evaluated at 𝐸𝐵𝑒
 is  

𝐽𝐸𝐵𝑒
≡ 𝐽(�̃�, 0, �̃�)

=

[
 
 
 
 
 
 

−𝑟�̃�

𝑘

−𝑏�̃�

1 + 𝑐�̃�
−𝑎�̃�

0
𝑏𝑒1�̃�

1 + 𝑐�̃�
− 𝑑1 − 𝑓�̃� 0

𝑎𝑒2�̃�

1 + ℎ�̃�
0 −

𝑚

�̃�
−

𝑎ℎ𝑒2�̃��̃�

(1 + ℎ�̃�)2]
 
 
 
 
 
 

 . 

The one eigen value of characteristic equation of 

𝐽𝐸𝐵𝑒
 is  

𝜆1 =
𝑏𝑒1�̃�

1 + 𝑐�̃�
− 𝑑1 − 𝑓�̃� .  

The rest eigen values of characteristic equation of 

𝐽𝐸𝐵𝑒
 will obtain from following equation 

𝜆2 + 𝐶1𝜆 + 𝐶2 = 0.                                      (5.2) 

Where,  

𝐶1 =
𝑟�̃�

𝑘
+

𝑚

�̃�
+

𝑎ℎ𝑒2�̃��̃�

(1 + ℎ�̃�)2
,  

𝐶2 =
𝑟�̃�

𝑘
(
𝑚

�̃�
+

𝑎ℎ𝑒2�̃��̃�

(1 + ℎ�̃�)2
) +

𝑎2𝑒2�̃��̃�

1 + ℎ�̃�
. 

Since 𝐶1 > 0 and 𝐶2 > 0 . Therefore using 

Routh-Hurwitz criteria all the roots of equation 

(5.2) are negative or have negative real parts. 

Hence equilibrium point 𝐸𝐵𝑒
 is locally 

asymptotically stable provided    

𝑑1 + 𝑓�̃� >
𝑏𝑒1�̃�

1 + 𝑐�̃�
 . 

Again on simple calculation, we observed that 

𝐸𝐵𝑒
 is locally asymptotically stable provided 

𝑚2
∗ < 𝑚. 

Where, 

𝑚2
∗ =

−𝐻2 + √𝐻2
2 − 4𝐻1𝐻3

2𝐻1
, 

𝐻1 = 𝛽9𝑟
2(ℎ𝛽8 − 𝛽9 + 𝑟ℎ2𝛽7), 

𝐻2 = 𝑟𝛽8(𝛽2𝛽8 + 𝑟𝛽1𝛽9)
+ 𝑟2𝛽7(ℎ𝛽2𝛽8 + 2𝛽2𝛽9

+ 2ℎ𝑟𝛽1𝛽9), 
𝐻3 = 𝑟𝛽7(𝑟𝛽1𝛽2𝛽8 + 𝑟2𝛽1

2𝛽9 − 𝑟𝛽2
2𝛽7). 

Remark 5.3:- It may be observed from the 

stability condition of 𝐸𝐵𝑒
 that herbivore species 

and exotic lion species will survive and leopard 

species will tend to extinction if constant 

recruitment rate of exotic lion population exists 

between two critical values 𝑚1
∗ and 𝑚2

∗ .  

(ii) The variational matrix for the system of 

equations (2.1)-(2.3) evaluated at 𝐸𝑃𝑒
 is  

𝐽𝐸𝑃𝑒
≡ 𝐽(𝑥∗, 𝑦∗, 𝑧∗)

=

[
 
 
 
 
 
 

−𝑟𝑥∗

𝑘

−𝑏𝑥∗

1 + 𝑐𝑧∗
−𝑎𝑥∗ +

𝑏𝑐𝑥∗𝑦∗

(1 + 𝑐𝑧∗)2

𝑏𝑒1𝑦
∗

1 + 𝑐𝑧∗
0 −𝑓𝑦∗ −

𝑏𝑐𝑒1𝑥
∗𝑦∗

(1 + 𝑐𝑧∗)2

𝑎𝑒2𝑧
∗

1 + ℎ𝑧∗
0 −

𝑚

𝑧∗
−

𝑎ℎ𝑒2𝑥
∗𝑧∗

(1 + ℎ𝑧∗)2 ]
 
 
 
 
 
 

 . 

The characteristic equation for variational matrix 

𝐽𝐸𝑃𝑒
 is given by 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0.                       (5.3) 

Where,  

𝐴1 =
𝑟𝑥∗

𝑘
+

𝑚

𝑧∗
+

𝑎ℎ𝑒2𝑥
∗𝑧∗

(1 + ℎ𝑧∗)2
 , 

𝐴2 =
𝑟𝑥∗

𝑘
(
𝑚

𝑧∗
+

𝑎ℎ𝑒2𝑥
∗𝑧∗

(1 + ℎ𝑧∗)2
) +

𝑎2𝑒2𝑥
∗𝑧∗

1 + ℎ𝑧∗

+
𝑏𝑥∗𝑦∗

(1 + 𝑐𝑧∗)2
(𝑏𝑒1 −

𝑎𝑐𝑒2𝑧
∗

1 + ℎ𝑧∗
) , 

𝐴3

= 𝑦∗ (
𝑏2𝑒1𝑚𝑥∗

𝑧∗(1 + 𝑐𝑧∗)2
−

𝑎𝑓𝑒2𝑧
∗

1 + ℎ𝑧∗)

+
𝑎𝑏𝑒1𝑒2𝑥

∗𝑦∗𝑧∗

(1 + ℎ𝑧∗)(1 + 𝑐𝑧∗)2
(

𝑏ℎ𝑥∗

(1 + ℎ𝑧∗)
− 𝑐) . 

Again on simple calculation, we observed that 

𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0  and 𝐴1𝐴2 − 𝐴3 > 0 if 

(i) 𝑏𝑒1 > 𝑎𝑒2   (ii) 𝑏𝑚 > 𝑎𝑒2𝑧
∗ (iii) ℎ𝑑1 > 𝑐𝑒1 

(iv) ℎ > 𝑐 are being satisfied. 

Using the Routh-Hurwitz criteria, we derive that 

the equilibrium point 𝐸𝑃𝑒
 is locally 

asymptotically stable, if (i) 𝑏𝑒1 > 𝑎𝑒2   (ii) 𝑏𝑚 >
𝑎𝑒2𝑧

∗ (iii) ℎ𝑑1 > 𝑐𝑒1 (iv) ℎ > 𝑐 are being 

satisfied. 

Remark 5.4:- It may be observed from the 

stability condition of 𝐸𝑃𝑒
 that all the three species 

that is herbivore species, leopard species and 

exotic lion species would coexist if (i) ratio of 

predation rates of leopard to lion is greater than 

the ratio of conversion efficiencies of lion to 

leopard, (ii) product of constant recruitment rate 

of exotic lion population and predation rate of 

herbivore population by leopard population is 

greater than product of predation rate of 

herbivore population by exotic lion population, 

conversion efficiency and equilibrium level of 

exotic lion population, (iii) ratio of intra specific 

interference coefficient within exotic lion species 

to inter specific interference coefficient due to 
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exotic lion species is greater than ratio of 

conversion efficiency of leopard population to 

death rate of leopard population, and (iv) the intra 

specific interference coefficient within exotic 

lion species is greater than the inter specific 

interference coefficient due to exotic lion species. 

NUMERICAL EXAMPLE  

In this section, we present a simulation analysis 

to explain the applicability of results in model 1 

and model 2. Now we choose the following 

values of parameters in model 2 

𝑟 = 1.5; 𝑘 = 100; ; 𝑏 = 0.15; 𝑒1 = 0.1; 𝑑1 =
0.5. Using above set of parameters, the stability 

region Ω1 and interior equilibrium point 𝐸𝑃 is 

given by 

Ω1 = {(𝑥, 𝑦) ∈ 𝑅+
2 : 0 ≤ 𝑥 ≤ 100, 0 ≤ 𝑦

≤ 60} . 
𝐸𝑃 ≡ (𝑥#, 𝑦#) = (33.3803, 6.6658). The Fig. 

6.1(a) illustrates the system stability behaviour of 

the interior equilibrium point of the model 2. Fig. 

6.1(b) shows phase plane graph between 

herbivore species and leopard species in the 

model 2. 

 

 
Fig. 6.1(a): Time series graph of the 

asymptotically stable interior equilibrium point 

𝐸𝑃(33.3803, 6.6658) of the model 2 with 

initial value (8, 2). 

 
Fig. 6.1(b): Phase plane graph of the 

asymptotically stable interior equilibrium point 

𝐸𝑃(33.3803, 6.6658) of the model 2 with initial 

value (8, 2). 
Now we choose the following values of 

parameters in model 1 

𝑟 = 1.5; 𝑘 = 100; 𝑎 = 0.2; 𝑏 = 0.15; 𝑒1 = 0.1; 
𝑒2 = 0.008; 𝑓 = 0.05; 𝑑1 = 0.2; 𝑑2 = 0.2; 
𝑐 = 0.01;𝑚 = 0.5; ℎ = 0.1.       (7.1) 
Using above set of parameters given in (7.1), the 

stability region Ω2 and interior equilibrium point 

𝐸𝑃𝑒
 is given by 

Ω2 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅+
3 : 0 ≤ 𝑥 ≤ 100, 0 ≤ 𝑦

≤ 150, 0 ≤ 𝑧 ≤ 12.5} . 
𝐸𝑃𝑒

≡ (𝑥∗, 𝑦∗, 𝑧∗) = (23.7817, 3.8227,

2.9313). The Fig. 6.2(a) illustrates the system 

stability behaviour of the interior equilibrium 

point of the model 1. Fig. 6.2(b) shows phase 

plane graph between herbivore species, leopard 

species and exotic lion species in the model 1. 

 
Fig. 6.2(a): Time series graph of the 

asymptotically stable interior equilibrium 
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point𝐸𝑃𝑒
(23.7817, 3.8227, 2.9313) of the 

model 1 with initial value (8, 3, 1). 
 

 
Fig. 6.2(b): Phase plane graph of the 

asymptotically stable interior equilibrium point 

𝐸𝑃𝑒
(23.7817, 3.8227, 2.9313) of the model 1 

with initial value (8, 3, 1). 
Now we explain the effect of changing of 

constant recruitment rate on account of Asiatic 

lion (exotic) on the model 1. Using distinct values 

of 𝑚 as well as remaining parameters are same as 

given in table 6.1 of model 1, then behaviour of 

stable equilibrium points are given in following 

table 6.1. 

Table 6.1: Behaviour of equilibrium point for 

distinct values of 𝑚. 
 

(i) From Fig. 6.3, it may be noted that 

herbivore population and exotic lion species will 

survives and leopard population become extinct 

for 𝑚 = 1  

 
Fig. 6.3: Time series graph of the asymptotically 

stable boundary equilibrium point 𝐸𝐵𝑒
(24.0312,

0, 5.6987) of the model 1 with initial value 

(8, 3, 1). 
 

The Fig. 6.4(a), Fig. 6.4(b), and Fig. 6.4(c), 

illustrate the stable equilibrium level of herbivore 

population, Leopard population and Asiatic lion 

(Exotic species) population respectively for 

distinct values of 𝑚.  

 
Fig. 6.4(a) Stable equilibrium level of 

herbivore population of the model 1 for 

distinct values of 𝑚. 
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Fig. 6.4(b) Stable equilibrium level of leopard 

population of the model 1 for distinct values of 

𝑚. 

 
Fig. 6.4(c) Stable equilibrium level of lion 

population of the model 1 for distinct values of 

𝑚. 

CONCLUSION 
In this paper, we have proposed a mathematical 

model to study the effect of Asiatic lion 

population on prey-predator system consisting 

native herbivore population and leopard 

population. From the stability of boundary 

equilibrium point EBe [See Fig. 6.3], it is observed 

that the leopard population will not survive and 

consequently herbivore population will survive 

and exotic lion population will also survive. It 

may be observed from the stability conditions of 

interior equilibrium 𝐸𝑃𝑒
 that all the three species 

that is herbivore species, leopard species and 

exotic lion species would coexist if (i) ratio of 

predation rates of leopard to lion is greater than 

the ratio of conversion efficiencies of lion to 

leopard, (ii) product of constant recruitment rate 

of exotic lion population and predation rate of 

herbivore population by leopard population is 

greater than product of predation rate of 

herbivore population by exotic lion population, 

conversion efficiency and equilibrium level of 

exotic lion population, (iii) ratio of intra specific 

interference coefficient within exotic lion species 

to inter specific interference coefficient due to 

exotic lion species is greater than ratio of 

conversion efficiency of leopard population to 

death rate of leopard population, and (iv) the intra 

specific interference coefficient within exotic 

lion species is greater than the inter specific 

interference coefficient due to exotic lion species. 

From the global stability analysis of equilibrium 

point 𝐸𝑃𝑒
 we derived that 𝐸𝑃𝑒

is more stable if 

interspecific interference coefficient due to exotic 

lion species as well as constant recruitment rate 

of lion population decreased. We observed that 

the positive interior equilibrium point 𝐸𝑃𝑒
 is 

stable for 0 < 𝑚 < 𝑚2
∗ (See Fig. 6.2(a), 6.2(b)). 

Boundary equilibrium point 𝐸𝑃𝑒
is stable for 𝑚2

∗ ≤

𝑚 < 𝑚1
∗ (see Fig. 6.3). The switching in stability 

behaviour based on constant recruitment rate of 

lion population 𝑚 is also observed (See Fig. 

6.2(a), 6.2(b), 6.3). Finally we conclude that if 

constant recruitment rate of exotic lion 

population is greater than some critical value 𝑚1
∗ 

then it is harmful to native prey-predator system. 

The constant recruitment rate of lion population 

creates complex phenomena in the system.  
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