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ABSTRACT
Computer experiments have been performed to study the size dependent thermal conductivity of 1D chains of anharmonic 
oscillators. 

 = 5) has been used. The size dependent temperature profile, thermal conductivity and heat 
flux are simulated for different chain lengths N = 8, 12, 20, 36 and 68. It is concluded that heat flux obeys J = CN . Relation 
between KN and N gives linear relation KN = aN.

In addition to the anharmonic interaction due to Fermi-Pasta-Ulam-β (FPU-β) model, an onsite potential due to 
Frenkel-Kontorova (FK) model (K/2

P
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INTRODUCTION
Unlike electronic devices, the devices that seek to 

control the flow of heat pose difficulties since the carriers 
of heat viz., phonons are not point particles having 
definite mass and charge. Generally one-dimensional (1-
D) lattice model has been used to get clear understanding 
of heat transfer at low dimensions. As considerable 
interest is growing in developing nanoscale devices, it 
becomes vital to study heat transport at this scale. Without 
a clear understanding on heat flow in nano-structures it 
will not be possible to pump-out radiant heat from the 
nano-devices which affects the device efficiency. It is 
extremely difficult to do experimental study of heat 
conduction at nanoscale, since the thermal contacts, 
thermal baths and thermal sensors are to be connected to 
nano – devices. Hence one has to prepare even smaller 
size gadgets for these. So in the absence of exhaustive 
experimental studies extensive theoretical and numerical 
experiments have been performed to investigate the 
phenomenon of heat transport at low dimensions. Based 
on earlier studies, it is well known that basic models 
without on-site potential like homogeneous harmonic 
chains [1], Toda lattices [2], Fermi-Pasta-Ulam lattices 
[3], etc. give a divergent thermal conductivity due to the 
existence of long wavelength modes [4]. By including 
special features such as periodic potential [5, 6], or on-site 
potentials like the ding-a-ling model [7], the ding-dong 
model [8], the Frenkel-Kontorova model [3], the discrete  
model [9] etc., finite thermal conductivity can be 
obtained. Later on it is also observed that for 
inhomogeneous harmonic and anharmonic chain with 
FPU-   model temperature gradient is built up and thermal 
conductivity is finite [10,11]. In this paper we would like 
to study size dependent heat conduction in one 
dimensional lattices. 12] is used to 
explain the interaction between the oscillators while FK 
Model [13] is used to express on-site potential for 
substrate interaction. The temperature profiles, 
characteristics of heat flux and thermal conductivity have 
been simulated as a function of the chain length of 1D 
chain of nonlinear oscillators.  In the present study the 
number of oscillators are taken as N = 8, 12, 20, 36 and 68.  
The Langevin thermostat [14] is used to keep the constant 
temperature at the first and the last particle of the chain.  In 
the reduced temperature unit, the first particle is kept at T
= 0.3 while the last particle is kept at T = 0.2. Here T is 
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the temperature of the left end of the chain and T  is the 
temperature of the right end of the chain. We have used 
fixed boundary conduction in the present study.

The Hamiltonian for the considered 1-D chain of 
anharmonic oscillators is of the form

R
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Here  is the displacement of i  particle from its 
equilibrium position and p  is the momentum of i  particle. 

is the interaction potential between nearest 
neighbours and is the onsite potential representing 
the interaction with the substrate. 
The nonlinearity or anharmonicity in the interparticle 
interaction is introduced through the FPU-     model [10]
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Here  is the coupling constant and lattice constant 
a = 1.
For on site potential  the FK Model used to describe 
substrate interaction is of the form        
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In the present simulation work, mass M = 1 unit, spring 
constant K = 0.5 and the period of on-site potential b = 1. 
The local temperature is define as 
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Langevin heat baths are put on the first and last oscillators, 
keeping them at T  = 0.3 and T  = 0.2, respectively. Hence 
the equations of motion are 
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where                                            is the force acting on 
the i  particles, is an independent Wiener process with 
zero mean, and variance parameter = 1. The and  
which models the microscopic action of the thermostats 
and implement the interaction of the first and last particles 
with the heat reservoirs by introducing random forces and 
dissipation.
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The equations of motion are integrated 
numerically by the fifth order Runge – Kutta 
integrator algorithm. Extensive molecular dynamic 
simulations have been performed for > 10  time units 
so that system attends a stationary state and the local 
heat flux is constant along the chain. We have used 
fixed boundary condition i.e. the first and last 
particles are fixed with heat bath. The local heat flux 
is determined by
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After a long time simulation, when system reaches a non-
equilibrium steady state, the time average J=<Ji(t)> is 
independent of the index i and then the heat conductivity  
is computed by 

κ

 
dxdT
J-=k (11)

RESULTS AND DISCUSSION
The present study is carried out for five different 1D 
chains of non linear oscillators. The sizes of oscillators are 
taken as N = 8, 12, 20, 36 and 68 (N=2 + 4). As the 
temperature profile gives the characteristic between 
lattice position and temperature, in Fig. 1, the temperature 
profiles for N = 68 coupled oscillators in the absence of 
anharmonicity coefficient  is shown. We found that there 
is no well defined temperature gradient in the stationary 
state, because temperature inside the chain equals to the 
average of two heat baths,    
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Now we have introduced the anharmonicity in 
FPU -   model via  = 1. Figure 2 shows the temperature 
profile for different system size. The temperature profiles 
indicate that the temperature gradient is formed. It is clear 
evidence from this that the shape of the profile becomes 
nonlinear on increasing the chain length. This nontrivial 
temperature profile obeys a simple scaling relation for 
increasing the number of nonlinear oscillators and shows 
that the temperature gradient scales as dT/dx ~N .

  
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The behaviour of heat current J as a function of chain 
length N for three different values of anharmonicity 
parameter  are plotted in Fig. 3, which reveals the 
relation J = CN  having P = -1.02, -1.02, -0.93 and R  = 
0.998 , respectively. 
Here R is the statistical parameter to judge the goodness 
of best fit. From this graph we conclude that heat flux J is 
inversely proportional to N and the heat flux diverges with 
system size. Presently obtained results for the thermal 
conductivity as a function of system size are also plotted 
in Fig. 4, which revels the power law, J = CN .

Relation b N and N is shown in Fig. 5. 
Which gives linear relation N = 0.027N, 0.036N 
and  respectively. From 
that we conclude that as system size increases

We have confirmed that the system size plays an 
important role in 1D chain for anharmonic oscillators. As 
the system size increases the shape of the profile becomes 
nonlinear. It is also concluded

the same 
system size and for constant strength of the on-site 
potential K/2  i.e. the heat flow is affected not only by the 
phonon-lattice interaction of FK model, but also by the 
phonon-phonon interaction . Such 
simulation results will be very important while studying 
the heat conduction at nano scale. This study helps us in 
using the nano – wire, nano – tubes of different length 
scale for specific thermal conduction.

Computer facility developed under DST-FIST 
Level–I from Department of Science and Technology, 
New Delhi and support under DRS-SAP-I from 
University Grants Commission, New Delhi, are 
acknowledged.
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Figure 1: Temperature profile for 1D harmonic lattice with
chain length N=68 (anharmonicity parameter  = 0). 
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Figure 2: Temperature profile for N = 8, 12, 20, 36 and 68 
with T  = 0.3 and T  = 0.2 under fixed boundary condition.L R
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Figure 3: Average Heat flux J 
 

versus N for β =0.1, 0.5
and 1 under fixed boundary condition.

J = 0.003N-1.02

R² = 0.998

J = 0.004N-1.02

R² = 0.999

J = 0.003N-0.93

R² = 0.999

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 10 20 30 40 50 60 70
N

Beta = 0.1

Beta = 0.5

Beta = 1.0

Figure 4: Thermal conductivity of 1D – chain of
anharmonic oscillators as a function of system size.
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