
where  is a complex variable and is a gamma function,  0. 
The Mittag–Leffler function is direct generalization of the 
hypergeometric function      and exponential function e  to 
which it reduces for                 and            .  Its 
importance is realized during the last two decades due to its 
direct involvement in the problems of physics, chemistry, 
biology, engineering and applied sciences. Mittag–Leffler 
function naturally occurs as the solution of fractional order 
differential equation or fractional order integral equations. 
Therefore, it is obvious that (1), (2) and (4) are special cases of 
(5), (6) and (7) respectively for 

  In the present paper, the generating relations and finite 
summation formulae obtained for sequence of functions (7) as 
these are obviously more powerful sequence of functions than 
(5) and (6). The technique discussed in this paper will certainly 
apply for sequence of functions (5) and (6).    
To obtain generating relations and finite summation formulae, 
the properties of the differential operators  and    

1 , where             used on the based of work (Mittal 
[3], Patil and Thakare [5]). 
In the fourth section, the relations between (7) with some well-
known polynomials (9) and (10) also have been discussed.
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 INTRODUCTION:
In 1971, Srivastava and Singhal [8] introduced general class of 
polynomial by employing the operator  
defined as 

Mittal [2] proved a Rodrigues formula for a class of polynomials  
 is given by 

 

where   is a polynomial in  of degree . Mittal [2] also 
proved the following relation

 In 1979, Srivastava and Singh [7] introduced a general sequence 
of functions by employing the operator                 

where  and  are constants, defined as

where   is a polynomial in  of degree .

     The new sequences of functions introduced in this paper are 
defined by (5) and (6) in the generalized form of (1) and (2) 
respectively as: 

 In this paper, authors also introduced one more new sequence of 
functions {  by means of generalized 
Rodrigues formula (7)

where ;  are constants and , are 
real or complex numbers; is finite and non-
negative integer,    is a polynomial in  of degree   with         
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Proof of (11):
From (7), we consider
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and replacing  by which gives (11).

From (7), we consider

 and simplifying the above equation, we get  

which proves (12).

writing (7) as

or

 
above equation can be written as 

and above expression reduces to

replacing    by  
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FINITE SUMMATION FORMULAE:
We obtained two finite sum formulae for (7) as

We can write (7) as,

we get,

which yields

Putting   = 0 and  replacing  by  in (7) then equation 
reduces to 

thus, we have

we get, 
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 which yields

by using  (11),

by equating the coefficients of  , we get

                               =

and use of (7), we get (15).

In this section, we have obtained some special cases and 
relations of sequence of functions 
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 if and  then (7) reduces to =     
-1 and then (7) gives

: 
The new sequence of functions (5), (6) and (7), introduced the in 
section 1, the results obtained in sections 2, 3 and 4 seems to be 
new and quite interesting. 
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