
PRAJÑĀ-Journal of Pure and Applied Sciences, Vol. 19: 41 - 44 (2011)
ISSN 0975 - 2595

NATURAL LANGUAGE INTERFACE FOR STUDENT INFORMATION SYSTEM (NLSIS)

ABSTRACT
Any computer system that interacts with user has a high utility value and ease. Natural Language Interface is a concept for
making computer interface with a user who wants to retrieve the information from a computer database with its own language
rather than learning a specialized language. The challenges in Natural language arise due to difficulty in correct interpretation,
disambiguation and context resolution.
We present our work in designing and implementing the Natural Language Interface for querying Student Information System.
It semantically parses the natural language question and built corresponding structured query from the database. The data
which is to be retrieved can be in the form of a spreadsheet or database. The system is developed in Java using JDBC for Student
Information System.
Keywords: Language, Database Interface, Structured Query Language, Data Retrieval

Amisha Shingala*, Rinku Chavda and Paresh Virparia1

*Department of MCA, SVIT, Vasad, Gujarat, India
G. H. Patel Computer Science , Sardar Patel University, Vallabh Vidyanagar, Gujarat, India1 Department

*Corresponding author : am_bt@yahoo.com

INTRODUCTION
The computer era has began from last few years and the

phase of bringing awareness into different walks of society
regarding use and benefits of computer increased successfully.
Not only industry but educational institute, service sectors,
manufacturing sectors etc are using computers to store, process
and update the information. The huge amount of data are stored
in repository called database and in order to query or retrieve
information from a database by general public, a Natural
Language (English) will provide correct and precise
information without knowing the depth of SQL query language.
The idea of using Natural language with database prompted the
development of new type of processing method called Natural
Language Interface to Database.
Some of the earlier attempts in providing Natural Language
Interface are given below:
1) MASQUE/SQL by Androutsopoulos et al [4] and

Anuxeree, P [5] can answer English question by
generating SQL code.

2) LUNAR [13] that answered questions about rock samples
back from the moon.

3) LIFER/LADER describe by Hendrix [9] was designed as a
natural language interface to database about US Navy
ships.

4) Warren el al's CHAT-80[12] and Auxerre et al's transform
written English questions into prolog queries which are
executed against Prolog database.
Information related to overview of various Natural

Language Interfaces and the difference between Natural
Language Interface and Question Answering could be found in
reference [1].The approach used in most of the recent systems is
to handle the entire query as one entity for transformation to SQL

either through conversion to intermediate representation or
directly. We had overcome many limitations which were given
by earlier researchers [11].

The following goals were set for the proposed NLSIS:
– An algorithm [2] is developed for

tolerating spelling errors, which uses degree of phonetic
match and degree of spelling match to correct misspelled
words. Since the semantics of the query for purpose of
conversion to SQL statement within a limited domain does
not use the grammatical structure of sentence formation, it is
implicitly tolerated. However, use of grossly, inappropriate
words (particularly prepositions e.g. using “ by” in place of
“of”, etc and interrogative pronouns) may lead to wrong or
failed interpretation of the user query.

 – We first
partition the query into intermediate language and then to
SQL clause. A part of query with associate SQL along with
domain-specific lexicon leads to an improved context
resolution and disambiguation.

 A tool is developed which
can covert data from spreadsheet to database and database to
relational database.

 The query once asked, was
stored in separate log which can be help in retrieving the
same information again without processing whole
algorithm.

Figure A present below ontology of Student Information
System (SIS) domain.

MODEL AND METHODOLOGY OF NATURAL
LANGUAGE STUDENT INFORMATION SYSTEM
(NLSIS)

Domain-Specific Ontology

- Fault Tolerance

- Better Context Resolution and Disambiguation

- Multiple database tool support:

- History Log Maintenance:

Figure A: Domain ontology for Student Information System

Architecture of system

SQL Query
Answer

Linguistic Component

Lexical analysis

SQL Construction

Component

SQL Generator

Natural
 Query

Database

History Log

Stanford Parser

Database Adaptor

SQL Executor

Semantic representation

Figure B: Architecture of NLSIS

A. The consists of Lexical Analysis, Parser
and Semantic representation as shown in figure B which is
explained below:

 Here the natural language sentence is
divided into smaller fragments called tokens. The elements
in natural language query are words or special characters.
This process is performed by following function:
i. Token analyzing function: It is used to generate the token

which is treated as a single unit.
ii. Spell checker function: It makes sure that the user

inputted query with correct word.
iii. Ambiguity reduction: It reduces ambiguity of sentence

and simplified the task of parser by substituting multiple
words or sy mbols with b ase word. E.g .
Comma considered as AND, co-occurring word as
single word etc.Also, we try to find out that the expected
answer would be named entity or not. Figure C represent
hierarchy of named entity [7]

Linguistic model

Lexical Analysis:

Figure C : Hierarchy of Named Entity

Stanford Parser:

most likely

 The Stanford Parser is a probabilistic parser
which uses the knowledge of language gained from hand-parsed
sentences to try to produce the analysis of new
sentences as shown in figure D. This package is a Java
implementation of probabilistic natural language parsers.
 The Stanford dependencies provide a representation of
grammatical relations between words in a sentence for any user
who wants to extract textual relationships [3]. The dependency
obtained from Stanford parser can be mapped directly to
graphical representation in which words in a sentence are nodes
in the graph and grammatical relationships are edge labels [6]. In
our system, we use the POS tagger and Typed Dependency for an
inputted query or sentences.

Figure D: Hierarchal structure of Stanford Parser

Semantic Representation: We had used two types of lexicon
semantic representation in the form of grammar for terminal
words, non terminal words and terminal symbols.

Table 1: Example of Terminal Words

Terminal Words Semantics/Base Word

girls, girl, female, madam Female
Percentage above 70 Distinction

Table 2: Example of NonTerminal Words

NonTerminal Words Semantics/Base Word
Greater than or equal to >=

Less, lower or lesser <

Table 3: Example of Terminal Symbols

Terminal Symbols Semantics/Base Word

Greater, larger, bigger,
biggest

Greater

Equal to, Like, equals,
same

Equal

B. SQL Constructing Component
This component consists of SQL generator, Database Adaptor
and SQL execution.

The task is to map element of the Natural
Language sentence into an actual element of SQL. We consider
SQL Generator:

December PRAJÑ Journal of Pure and Applied Sciences, Vol. 19: 41 - 44 (2011)Ā-42

only SELECT as a statement to view the data in various forms.
We used BNF form of SQL grammar [10]
<select query> ::= <select> [UNION [ALL | DISTINCT]
<select query>]

<select> ::= SELECT [ALL | DISTINCT] <select list> <from
clause>

[<where clause>]

<select list> ::= '*'| <column element> [{',' <column element>
}...]

<column element> ::= <column>| <aggregate function> '('
<column> ')'

<from clause> ::= FROM <table reference>[{','<table
reference>}...]

<table reference> ::= <table schema> [[AS] <correlation
name>]| <table reference>

[INNER | LEFT | RIGHT] JOIN <table reference> ON <search
conditions>

<where clause> ::= WHERE <search conditions>

The <search condition> is a logical predicate composed of
logical conditions with AND and OR operator. The <aggregate
functions> like max, min, sum, average and count transforms
set of rows into scalar statement. The <condition is a
expression in form X Y where X and Y are the set of values
representing column, aggregate function, constant or NULL
and R can be operated like {<,>,<=, >=, !=,==}.

: The data repository can be in the form of a
spreadsheet or database. Our algorithm converts these data into
MySQL database and retrieve the answer from MySQL database
tool.

 The task is to map the SQL generated query to
Database Adaptor and retrieve the relevant information or
answer by connecting to the appropriate database tool.

(i) Read statement or user query S

(ii) Search S from History Log H
If found, call query generate algorithm and retrieve the
query Q
Execute the Query Q and Display the answer Ans.

(iii) If S not successful, perform all the steps from step iv.

(iv) For each word W from S do
If W base word then
Add Wi to symbol table ST

 End if
 Endfor

(v) For each Wi from ST do
Add Wi to Parse tree

 End for

(vi) Display POS tagger and Typed dependency and get
relationship between words PDR

(vii)For each PDR do
If metadata = PDR then
Add table name, attribute and condition to OUT

 Endif
Endfor

>

Database Adaptor

SQL Executor:

R

i

i

3. Algorithm for NLSIS

(viii) For each OUT do
Generate the SQL query Q1
Call Data conversion algorithm
Execute SQL query Q

 End for
(ix) Display SQL query Ans.

The software has been subjected to test with a number of
volunteers phrasing the queries differently. In around 70% cases,
the system could correctly interpret and process the query.
Currently, the system fails in some cases to handle very complex
queries coupled with fuzzy terms. We had paraphrased different
queries in the form of simple query, condition query, order by
query and join query. Figure E shown implemented version of
the system.

RESULTS and DISCUSSION

Input or Query SQL Query generated
Display details of all students Select * from students;

Who are our students ?
 show

me

list of all students ?

Select * from students;

Show me all branches Select * from branch
Display various branches Select bnm from branch

Table 4: List of normal Queries.

Table 5: List of Conditional Queries
Input Sentence or Query SQL query generated

List of all female students or
Display details of girls students

List of students who live in

Baroda

Select studnm from student
where gender = ‘F’

Select studnm from student

where city = ‘VADODARA ’
Details of Monalisa?

Select * from student where

studnm = ‘monalisa’
Give me hsc% of aryan or

display 12th percentage of Aryan
Select hscper from student

where studnm = ‘%aryan%’

Table 6: List of Aggregate function Queries

Table 7: List of Order by Queries

Table 8: List of Simple join Queries

Input Sentence or Query SQL query generated
How many students are in

semester 6

Select count(*) from students
where sem =6;

List youngest student in sem

1

Select min(age) from
students where sem =1;

How many students we have ? Select count(*) from students

Input Sentence or
Query

SQL query generated

Display student record
in ascending order of

their rollnos
Select * from students order

by studid;

Display male students
in descending order of

their age

Select studnm, age from
students where gender = ‘m’

order by age

Input Sentence or
Query

SQL query generated

Display branch in
which rima study

Select bnm

from branch
natural join student

2011 43 Amisha Shingala et al. - Naturel language information

Figure E: A sample screen shot of the system

CONCLUSION AND FUTURE WORK

REFERENCES

The degree of correct interpretation and processing of
Natural Language Queries relies on the extent of exhaustiveness
of domain-specific lexicon. Despite of some limitations, the
proposed system provides a robust tool to handle Natural
Language Queries allowing fault-tolerance to some degree. The
work can be further extended by providing multilingual
(Gujarati or Hindi language) query to SQL conversion.

[1] Amisha Shingala & Paresh Virparia, (2011) A Survey of
Natural Language Interface, International Journal of
RESEARCH@ICT: International Journal of Information
and Computing Technology, Volume 2 , ISSN: 0976 –
5999.

[2] Manage and Access
Information and Knowledge through Natural Language
Queries, Fifth AIMS International conference.

[3] Anjali Ganesh Jivani, Amisha Shingala & Paresh Virparia
(2011) The Multi-Liaison Algorithm, International Journal
of Advanced Computer Science and Applications,Volume
2 Issue, ISSN 2156-5570 (Online)

[4] Androutsopoulos, 1, Ritchie & Thanisch P (1993),
MASQUE/SQL- An efficient and portable Natural
Language Query Interface for Relational Database, Proc.
of Sixth International Conference on Industrial &
Engineering Applications of AI & Expert System,
Edinburgh.

[5] Anuxerre, P & Inter R (1993) MASQUE Modular
Answering System for Queries in English - User's Manual,
AI Applications Institute, Univ. of Edinburgh.

Amisha Shingala & Sanjay Vij (2007)

[6] Faraj A. El-Mouadib, Zakaria S. Zubi, Ahmed A.
Almagrous, and Irdess S. El-Feghi (2009) Generic
Interactive Natural Language Interface to Databases
(GINLIDB), International Journal of Computers, Issue 3,
Volume 3.

[7] Ferret, B. Grau, M. Hurault-Plantet, G. Illouz, How NLP
can improve Question Answering, Limsi-cnrs, BP Orsay
Cedex

[8] F.Siasar djahantighi, M.Norouzifard, S.H.Davarpanah,
M.H.Shenassa (2008) Using Natural language processing
in order to create SQL queries, Proceedings of the
In terna tional Conference on Computer and
Communication Engineering, Kuala Lumpur, Malaysia

[9] Hendrix, C.G; Sacerdoti, E.D; Sangalowicz, D; Slocum J
(1978) Developing a natural language interface to
complex data “, ACM Trans on Database Systems, 3(2),
pp. 105-147.

[10] Mª José Suárez-Cabal (2009) Structural Coverage Criteria
for Testing SQL Queries,

[11] Niculae Stratica (2002)
, Thesis, Master of Computer Science,

Concordia university, Quebec, Canada.
[12] Warren D and F. Pereira (1982) An Efficient Easily

Adaptable System for Interpreting Natural Language
Queries, Computational Linguistics, pp.110-122

[13] Woods, W.A. (1973) Progress in Natural Language
Understanding: An Application to Lunar Geology, AFIPS
Conf. Proc. 42, pp. 141-450.

 Journal of Universal Computer
Science, vol. 15.

Natural language interface for
querying Cindi

December PRAJÑ Journal of Pure and Applied Sciences, Vol. 19: 41 - 44 (2011)Ā-44

