SEAT No.

No. of Printed Pages: 04

[116]

SARDAR PATEL UNIVERSITY

External Examination

M.Sc. (Zoology) Semester -I Subject: PS02EZOO21- Biostatistics Wednesday, 27th March, 2019

Time: 10:00	a.m.	to	01:00	p.m.
-------------	------	----	-------	------

Total marks: 70

N	ote: F	igures to right side indicate marks.	
Q.1	Cho	ose the most appropriate alternative for the fo	Ilowing: [8]
	1.	To verify whether two dependent sample equal means, which test if most suitable?	les have been drawn from populations having
		A) Paired t-testC) ANOVAE) None of Above	B) Two sample t-test D) Chi-square test
	2.	Normal probability distribution is suitable fo A) Individual C) Continuous E) None of Above	r handling probability of random variable. B) Discrete D) All of Above
	3.	Analysis of variance is a statistical method of A) Standard Deviation C) Variances E) None of Above	comparing the of several populations. B) Mean D) Median
	4.	Editing of primary data is done for: A) Completeness C) Accuracy E) None of Above	B) Consistency D) All of Above
	5.	The value of second quartile (Q ₂) is equal A) Mean C) 50 th Percentile E) None of Above	ls to: B) Mode D) 4 th Deciles
·	6.	The shape of normal curve is similar to the A) Less than Ogive C) Frequency Polygon	ne shape of B) More than Ogive D) Frequency Curve

E) None of Above

A) Mean > Median > Mode C) Median > Mean > Mode E) None of Above when one does not occur more often that A) Mutually Factorius B) Mean < Median < Mode D) All of Above 8. Events are said to be when one does not occur more often that A) Mutually Factorius												
C) Median > Mean > Mode D) All of Above E) None of Above when one does not occur more often that												
E) None of Above 8. Events are said to bewhen one does not occur more often that	n the others.											
when the does not occur more often that	n the others.											
A) Mutually Exclusive B) Equally likely												
C) Dependent D) All of Above												
E) None of Above												
Q.2 Attempt any seven of the following:	[14											
1. Define sample. Write down the merits and demerits of sample survey.	Ļ											
2. Explain various types of correlation with the help of scattered diagrams.												
3. Enlist the various measures of dispersion. Discuss anyone of them with its impor-	tance											
4. Prove P(A) + P(B)=1.	urke,											
5. Define statistics and explain various sequential stages of statistical investigation.												
6. Differentiate between paired t-test and two sample t-test.												
7. Give the relationship between A.M., H.M. and G.M. and prove it.												
8. State BAYES' theorem and derive the BAYES' Equation.												
9. Explain null hypothesis and alternative hypothesis?												
2.3 A. Find the missing frequency "x" from the given data table. If the mean of given data	ta is 19.9. [6]											
No. of leaves 4-8 8-12 12-16 16-20 20-24 24-28 28-32 32-	36											
No. of Plants 11 13 16 14 "x" 9 17 6												
B. Draw (i) Histogram (ii) Frequency polygon and (iii) Percentile curve using fol	owing data in [6]											
your answer sheet:												
Molecular weight in Mole 10-15 15-20 20-25 25-30 30-35 35-40	40-45											
No. of Protein 12 24 32 20 17 17												
	13											
B. Give equations for computing Kelly's coefficient of skowness with the magnine of												
a 4-man for companies received the skewness with the meaning a	nd equation of [6]											
each symbol in equation.												

Q.4 A. Calculate value of coefficient of variation for following data.

			American programme and the second programme an					A STREET, STRE
No. of leaves	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of flowers	5	9	13	21	20	17	7	3

6

[6]

[6]

B. Calculate value of mean for following data.

								·
No. of leaves	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of flowers	5	9	13	21	20	17	7	3

OR

B. From the following data obtain the regression equations of X on Y.

Sr. No.	1	2	3	4	5
No. of Proteins	6	2	10	4	8
No. of Active sites	9	11	5	8	7

- Q.5 A. Define and describe statistical inference? Discuss various steps of hypothesis testing; also [6] discuss about four possibilities of results when hypothesis is tested in statistic.
 - B. The manufacturer of certain makes drug claims that his drugs have a mean dissolution time of 25 minutes with standard deviation of 5 minutes. A random 6 sample of such drug were taken to test dissolution time and it gave the following dissolution time:

Dissolution time of six drugs in minutes	24	26	30	20	20	18

Carry out "t - test" for the data and comment on the claim of the manufacturer is valid or not at 1% level of significance. (Value of "t" at 1% level of significance is 4.032)

OR

B. Sperm sample was analyzed for having normal or abnormal morphological features. 400 [6] sperms were analyzed and found that 216 sperms were abnormal. Test the hypothesis that the sperm sample has 50% of normal and 50% of abnormal sperms in it by using the standard error for testing the number of successes at 5% level of significance. (at 5% level of significance value of S.E. = 1.96SE)

Q.6 A. Find value of Value of Karl Pearson's coefficient of correlation for the following data.

No. of leaves (X)	48	35	17	23	47
No. of flowers (Y)	45	20	40	25	45

[6]

[6]

B. In an experiment to study the dependence of hypertension on smoking habits, the following [6] data were taken on 180 individuals.

	nonsmokers	Heavy smokers
Hypertension	21	66
No hypertension	74	19

Test the hypothesis that the presence or absence of hypertension is independent of smoking habits at 5% level of significance using χ^2 test. (For $\upsilon=1$, value of χ^2 at 5% level of significance is 3.84)

OR

B. Two random samples were drawn from two normal population and their values are as follows:

Sample 1	66	67	<i>7</i> 5	76	82	84	88	90	92		
Sample 2	64	66	74	78	82	85	87	92	93	95	97

Test whether the two populations have the same variance at the 5% level of significance using "F" test. (For $\upsilon=10$ and $\upsilon=8$, value of F at 5% level of significance is 3.36)