8

SEAR I.V.

No. of Printed Pages . 4

SARDAR PATEL UNIVERSITY

M.Sc Examination, 3rd Semister

Friday Date: 26-10-2018 Time: 2.00 p.m. to 5.00 p.m.

Subject/Course Code: PS03ESTA \$21
P503ESTA 21
Reliability and Life Testing

Q-1 Answer following.

- In usual notation for ith component, $\phi(1_i, X) = \phi(0_i, X)$ then ith component is
- - (a) irrelevant.
 - (b) relatively important.
 - (c) critical.
 - (d) Non-of-above.
- (2) In usual notation for ith component $[\phi(1_i, X) \phi(0_i, X)] \neq 1$ then ith component is
 - (a) irrelevant.
 - (b) relatively important.
 - (c) critical.
 - (d) Non-of-above.
- (3) Reliability importance of ith component is denoted by
 - (a) $\eta_{\phi}(i)$
 - (b) $I_{\phi}(i)$.
 - (c) $I_h(i)$
 - (d) Non-of-above.
- (4) For two types of failure, real system fail and safety and monitoring system fail
 - (a) we use series structure.
 - (b) we use parallel structure.
 - (c) we use coherent structure.
 - (d) we use dual structure.
- (5) In usual notation total time on test till kth failure, for with replacement is
 - (a) $nX_{1:n}$.
 - (b) $(n-1)(X_{2:n}-X_{1:n}).$

- (d) Non-of-above.
- (6) In usual notation total test time observed between $x_{k:n}$ to t for with out replacement is
 - (a) $nX_{1:n}$
 - (b) $(n-1)(X_{2:n}-X_{1:n}).$
 - (c) $(n-k)(t-X_{k:n})$.
 - (d) Non-of-above.
- (7) In usual notation # of components in hi-fy system are
 - (a) 5.
 - (b) 4.
 - (c) 3.
 - (d) 2.
- (8) In usual notation mean life is $e^{\mu + \frac{\sigma^2}{2}}$. The life model is
 - (a) exponential.
 - (b) negative exponential.
 - (c) gamma.
 - (d) Non-of-above.

Q-2 Answer following.

- (1) Give two definition of DFR.
- (2) Derive reliability function for life model $f(x; \theta) = (1 + x\theta)^{-1 \frac{1}{\theta}}$; 0 < X

14

- (3) Given hazard rate, $\lambda(t) = \frac{1}{1+t\theta}$ derive life model.
- (4) In usual notation interpret: (1) Minimal path set (2) Minimal cut set
- (5) In usual notation derive unbiased estimator of reliability for life model F(X).
- (6) In usual notation interpret:

For any coherent structure $\phi(X \coprod Y) \ge \phi(X) \coprod \phi(Y)$.

- (7) In usual notation deriving structure function of two component series structure using $\phi(X) = \sum_{y} \sum_{j=1}^{n} X_{j}^{y_{j}} (1 X_{j})^{1-y_{j}} \phi(y)$; sum is extended over all y of order n.
- (8) Write inclusion-exclusion probability law.
- (9) In usual notation interpret: For any coherent structure $\prod_{i=1}^{n} X_i \leq \phi(X) \leq \coprod_{i=1}^{n} X_i$
- Q-3 A React and justify: Chain is as strong as it's weakest link.
- Q-3 B In usual notation interpret and prove: For coherent structure $\phi(X \prod Y) \le \phi(X) \prod \phi(Y) \text{ and equality holds if } \phi \text{ is series structure.}$

OR

- Q-3 B Show that dual of k-out-of-n system is (n-k+1)-out-of-n system.
- Q-4 A In usual notation the $\theta_r^* = (nx_{r,n}/r) \sim GAM(\theta/r,r)$, where θ_r^* is complete sufficient statistics of θ . Show that $E(1 t/r\theta_r^*)^{r-1} = e^{-(\frac{t}{\theta})}$.
- Q-4 B In usual notation derive marginal posture pdf $\Pi(\eta/x)$, when joint posture pdf $\Pi(\theta,\eta/x) = (nS^{r+c-2}/\theta^{r+c}\Gamma r + c 2)e^{-[S+n(x_{1:n}-\eta)]/\theta}$.

 OR
- Q-4 B In usual notation state and prove Greenwood's formula use in life table.
- Q-5 A Express bridge structure as:

6

- (1) parallel arrangement in minimal path series structure.
- (2) series arrangement in minimal cut parallel structure.
- Q-5 B Derive bound on reliability function using second method.

6

OR

- Q-5 B Consider type-II censored sample (without replacement) of size n from $EXP[\theta]$. Derive test procedure for testing $H_0: \theta = \theta_0$ V.S $H_1: \theta = \theta_1$.
- Q-6 A In usual notation define D_k , k^{th} spacing between order statistics. For uncensored sample of size n from life model $EXP[\theta]$ and show that $\forall \ D_k \sim \text{EXP}(\frac{\theta}{n-k+1}); \text{ for } k=1,2,\ldots,n.$
 - In usual notation define reliability importance of component and show that 6 Improvement in component reliability Δp_j leads to a corresponding improvement in Δh in system.

OR

B In usual notation for 2-out-of-3 system with structure $\phi(X) = X_1(X_2 \coprod X_3)$ compute relative importance for component-1.

