[278]

SEAT No.

No of Printed pages: 03

SARDAR PATEL UNIVERSITY M.Sc. (Statistics) 3rd Semester Examination

2018

Wednesday, 24th October 2:00 p.m. to 5:00 p.m. Course No. PS03CSTA02/22

(Multivariate Analysis)

Note: Figures to the right indicate full marks of the questions. (Total Marks: 70)

1 Write the correct answer (each question carries one mark).

08

- (a) A random vector \underline{X} is said to have multivariate normal distribution iff
 - (A) its pdf is of the form $(2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\{-\frac{1}{2}(\underline{x}-\underline{\mu})'\Sigma^{-1}(\underline{x}-\underline{\mu})\}$
 - (B) every linear function of \underline{X} has univariate normal distribution.
 - (C) marginal distribution of any subvector of normal vector is normal.
 - (D) conditional distribution, given remaining components, is normal.
- (b) Under the standard Wishart distribution, the distribution of sample generalized variance is
 - (A) product of independent Wishart distributions
 - (B) product of independent chi-square distributions
 - (C) product of independent beta distributions
 - (D) none
- (c) Suppose \underline{X}_1 and \underline{X}_2 are iid r.vs. from $N_p(\underline{0}, \Sigma), \Sigma > 0$. Which is true
 - (A) $\underline{X}_1\underline{X}_1' + \underline{X}_2\underline{X}_2' \sim 2\chi_p^2$
 - (B) $\underline{X}_1\underline{X}_1' + \underline{X}_2\underline{X}_2' \sim \chi_{2p}^2$
 - (C) $X_1X_1' + X_2X_2' \sim 2W_p(\Sigma, 1)$
 - (D) $\underline{X_1}\underline{X_1'} + \underline{X_2}\underline{X_2'} \sim W_p(\Sigma, 2)$
- (d) Suppose $\underline{X}_1, ..., \underline{X}_N$ are iid r.vs. from $N_p(\underline{0}, \Sigma), \Sigma > 0$. For every $\underline{l} \in \mathcal{R}^p$, $\sum_{i=1}^N \underline{l}' \underline{X}_i \underline{X}_i' \underline{l}$ follows
 - (A) a normal distribution
 - (B) a chi-square distribution
 - (C) a Wishart distribution
 - (D) none
- (e) Let \overline{X} and S be the sample mean vector and unbiased covariance matrix of a r.s. of size N from $N_p(\underline{\mu}, \Sigma)$, $\Sigma > 0$, N > p. Then Hotelling's T^2 statistic may be constructed as
 - (A) $(N-1)(\overline{X}-\underline{\mu})'S^{-1}(\overline{X}-\underline{\mu})$
 - (B) $N(\overline{X} \underline{\mu})'S^{-1}(\overline{X} \underline{\mu})$

(C)
$$\frac{1}{N-1}(\overline{X}-\underline{\mu})'S^{-1}(\overline{X}-\underline{\mu})$$

(D)
$$\frac{1}{N}(\overline{X} - \underline{\mu})'S^{-1}(\overline{X} - \underline{\mu})$$

- (f) A square of multiple correlation coefficient is distributed as
 - (A) beta kind I
 - (B) beta kind II
 - (C) chi-square
 - (D) Wishart
- (g) Suppose $\underline{X}_1^{(i)}, \dots, \underline{X}_{N_i}^{(i)}$ are independent r.vs. from $N_p\left(\underline{\mu}_i, \Sigma\right), \Sigma > 0$. Let \underline{X} be the combined mean vector and $B = \sum_{i=1}^k N_i (\underline{X}_i \overline{X}) (\underline{X}_i \overline{X})^i$. The distribution of B

is (A)
$$W_p(\Sigma, \mathbf{k} - 1)$$

- (B) $W_p(\Sigma, k-1)$ provided $\underline{\mu}_1 = \cdots = \underline{\mu}_k$
- (C) $W_p(\Sigma, \mathbf{n})$ where $n = \sum_{i=1}^k (N_i 1)$
- (D) none of the above
- (h) A Wilk's Λ statistic is the ratio of two independent
 - (A) Wishart matrices
 - (B) Wishart matrices divide by respective d.f.
 - (C) generalized variances
 - (D) none of the above.

2 Answer any SEVEN of the following (each question carries two marks)

14

- (a) Let $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$. Obtain its density when Σ is n.n.d.
- (b) Let $A \sim W_p(\Sigma, m)$ and $B \sim W_p(\Sigma, n)$ be independent. Obtain the distribution of A + B.
- (c) Let $V \sim W_p(\Sigma, n)$. Obtain the distribution of (i) V^{-1} and (ii) $V_{11=2}^{-1}$.
- (d) In usual notations, show that V > 0 if and only if N > p.
- (e) Obtain the null distribution of a sample multiple correlation coefficient.
- (f) Using one of the properties of Wishart distribution, obtain the distribution of the Hotelling's T² variable.
- (g) State Box theorem.
- (h) Let $V_i \sim W_p(\Sigma, n_i)$, i = 1, ..., k be independently distributed. Let $V = V^{1/2}V^{1/2}$ and $V_i = V^{1/2}L_iV^{1/2}$, i = 1, ..., k-1. Obtain the joint distribution of $(L_1, ..., L_{k-1})$.
- (i) Define multivariate regression model and obtain the MLEs of the parameters of this model.
- 3 (a) Define multivariate normal distribution. Show that

 (i) the distribution of \underline{X} can be determined from the distribution of univariate normal.

2

- (ii) $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$ if and only if \underline{X} can be written as $\underline{X} = \underline{\mu} + B\underline{Y}$, $BB' = \Sigma$, where B is p x k matrix of rank k and $\underline{Y} \sim N_k(\underline{0}, I)$.
- (b) Obtain the conditional distribution of subvector of normal vector given the 06 remaining components.

OR

- (b) Define symmetric normal distribution and obtain the distribution of intra-class correlation.
- 4 (a) State and prove Bartlett's decomposition lemma. Hence obtain the density of 06 standard Wishart distribution.
 - (b) Define inverted Wishart distribution and prove its import theorem. From this 06 theorem deduce that
 - (i) $\sigma^{pp}/v^{pp} \sim \chi^2_{n-p+1}$ where σ^{pp} is the $(p,p)^{th}$ element of Σ^{-1} (V^{-1}) and
 - (ii) $\underline{h}' \Sigma^{-1} \underline{h} / \underline{h}' V^{-1} \underline{h} \sim \chi_{n-n+1}^2$, where \underline{h} :px1 is a real vector.

OR

- (b) State and prove residual theorem.
- 5 (a) Discuss test of contrasts. Using this derive the Hotelling's T² test for 06 Randomized Block Design (RBD) when the underlying assumptions are not met.
 - (b) Let $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, $\Sigma > 0$. Construct the test for testing of hypothesis $H: \underline{\mu} = \underline{\mu}_0$ where $\underline{\mu}_0$ is specified and Σ is unknown, either using LRT or Roy's union-intersection principle.

OR

- (b) Discuss Fisher-Behran problem in multivatiate analysis.
- 6 (a) Develop the sprericity test.

06

(b) Let $V \sim W_p(\Sigma, n)$, $\Sigma > 0$, $n \ge p$ and let $V = (V_{ij})$, $\Sigma = (\Sigma_{ij})$ where $V_{ij}: p_i \times p_j, \Sigma_{ij}: p_i \times p_j, i, j = 1, ..., k \text{ and } p_1 + \cdots + p_k = p. \text{ Obtain the asymptotic}$ $(\Sigma_{11} \cdots 0)$

distribution of LRT for testing $H: \Sigma = \begin{pmatrix} \Sigma_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Sigma_{kk} \end{pmatrix}$ against $K \neq A$.

OR

(b) For multivariate regression model develop LRT for testing the general hypothesis.

.