			S	2
	[10	02/102] SEAT NO	No. of Printed pages: 0	2.
		SARDAR PATEL UN	•	_
		M.Sc. (Statistics) 2 nd Semes		
		2018		
		Saturday, 27 th C	October	
		10:00 a.m. to 01:	•	
		Course No. PS02CSTA03		
.	. 1979	(Statistical Infere		
N	ote: F	igures to the right indicate marks. (Total	marks: 70)	
1	Wri	te the correct answer (each question carri	es one mark).	08
	(a)	Type II error is defined as		
		(A) the probability of accepting the null hy	pothesis H ₀ when it is false	
		(B) Rejecting H ₀ when it is true		
		(C) Accepting H ₀ when it is false		
		(D) the probability of rejecting H ₀ when it	is true	
	(b)			
		involving a single parameter is also UN	IP test for testing simple null versus	-
		composite alternative if		
		(A) distribution has MLR property	(B) test is unbiased	
		(C) CR is free from alternative values of the	e parameter (D) none	
	(c)	A UMP test becomes UMP unbiased test is		
		(A) power function is continuous	(B) θ belongs to boundary set	
		(C) a test is level α test	(D) none	
	(d)	A UMP test exists for simple null vs two-s	ided alternative if	
		(A) $\partial L(x;\theta)/\partial \theta = \text{constant}$	(B) distribution is one-parameter EFD	
		(C) critical region is free from alternatives	· · · · -	
	(e)	If power function of every test is continuous	as then an α level UMP similar test is	
		(A) UMP	(B) UMPU	
		(C) having Neyman structure	(D) none.	
	(f)	LRT cannot be applied to test a hypothesis	· · · · · · · · · · · · · · · · · · ·	
		(A) goodness-of-fit	(B) dependent samples	
		(C) multi-parameters	(D) multivariables	

(B) $X_i X_j$

(C) $X_i^2 - X_i X_j$

(D) none

 $(A) X_i$

(C) error probabilities

(D) X_i^2 .

2 Answer any SEVEN of the following (each question carries two marks)

(g) To determine the cut-off points A and B in SPRT we require to know

(B) distribution of a test statistic under alternative hypothesis

(A) null distribution of a test statistic

(h) The kernel for estimating squared mean is

- (a) State the Neyman-Pearson lemma. (b) Define Monotone Likelihood Ratio (MLR). Give at least one example of a distribution which does and which does not have the MLR property.

14

(c) Let $X_1,...,X_n$ be a random sample of size n from

$$f(x, \theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}, \quad x > 0, \theta > 0$$

Obtain a UMP test of size α for testing $\,H_{_{0}}:\theta\leq\theta_{_{0}}\,\,$ against $\,H_{_{1}}:\theta\geq\theta_{_{0}}\,.$

- (d) Suppose you have a sample of size n from a distribution having MLR property in $T(\underline{x})$. Write down the UMP test for testing $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$.
- (e) Define unbiased and UMP unbiased test.
- (f) Prove that α -similar test is unbiased test.
- (g) Define SPRT. How does it differ from Neyman-Pearson test?
- (h) For the SPRT with stopping bounds (A, B) and strength (α, β) show that

$$A \le \frac{1-\beta}{\alpha}$$
 and $B \ge \frac{\beta}{1-\alpha}$

- (i) Define U-Statistic and state its properties.
- 3 (a) Define randomized test. By way of an example show why it is needed?
 - (b) Define UMP test. Derive an UMP test for testing composite null hypothesis 06 against composite alternative for distributions possessing MLR property.

OR

- (b) Show that based on a sample of size n from N(θ , 1), UMP test does not exist for testing H₀: $\theta = \theta_0$ against H₁: $\theta \neq \theta_0$.
- 4 (a) Define α-similar test and Neyman-structure test. Show that every Neyman- 06 structure test is α-similar test. Why do we need these concepts?
 - (b) Let $X_1, ..., X_n$ be a r.s. from $U(\theta_1, \theta_2)$ distribution. Obtain a test for $H: \theta_1 \leq 0$ ov $K: \theta_1 < 0$ and name the derived test.

OR

- (b) Consider a random sample $X_1, ..., X_n$ from $N(\theta, \sigma^2)$, σ^2 unknown. Using ancillary statistic find out a UMP unbiased size- α test for testing $H: \mu \leq \mu_0$ against $K: \mu > \mu_0$.
- 5 (a) Define UMA and UMA unbiased confidence bounds and obtain one of them for the parameter θ of $f(x; \theta), \theta \in \Omega$.
 - (b) Define Likelihood Ratio Test (LRT) and specifying the under lying assumptions obtain its asymptotic distribution in case of simple hypotheses.

OR

06

06

- (b) Let $X_1, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$. Obtain the LRT test for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.
- 6 (a) State and prove Ward's fundamental identity.
 - (b) Define the following terms and give illustration for each term.
 Estimable parameter, Degree of a parameter, Kernel of a parameter,
 Symmetric kernel, U-statistic

OR

(b) Obtain exact and asymptotic expressions of the variance of one-sample U-statistic.

