No. of Printed pages: 03

SARDAR PATEL UNIVERSITY M.Sc.(II Semester) Examination 2012

Wednesday, 5th December 10:30 a.m. to 1:30 p.m. Course No. PS02CSTA03

(Statistical Inference II)

Note: Figures to the right indicate marks. (Total marks: 70)

	Write the co	orrect a	answer	(each	question	carries	one	mark	١
--	--------------	----------	--------	-------	----------	---------	-----	------	---

8

- (a) A UMP test becomes UMP unbiased test if
 - (i) power function is continuous (ii) θ belongs to boundary set
 - (iii) a test is level α test
- (iv) none
- (b) A UMP test exists for simple null vs two-sided alternative if
 - (i) $\partial L(x;\theta)/\partial \theta = \text{constant}$
 - (ii) distribution is one-parameter EFD
 - (iii) critical region is free from alternatives
 - (iv) power function is continuous
- (c) For multiparameter EFD a best test exits for composite alternative and is of the type
 - (i) MP test (ii) UMP test (iii) UMPU test (iv) none of the above
- (d) An MP test, for testing simple null versus simple alternative for a distribution involving a single parameter, is also UMP test for testing simple null versus composite alternative if
 - (i) distribution has MLR property
 - (ii) test is unbiased
 - (iii) critical region is free from alternatives value of the parameter
 - (iv) none
- (e) To determine the cut-off points A and B in SPRT we require to know
 - (i) null distribution of a test statistic
 - (ii) distribution of a test statistic under alternative hypothesis
 - (iii) error probabilities
 - (iv) none
- (f) The ratio of likelihood function under H₀ and under the entire parameter space is called
 - (i) probability ratio
- (ii) sequential probability ratio
- (iii) likelihood ratio
- (iv) none of these
- (g) A test $\phi(x)$ such that $0 \le \phi(x) \le 1$ is a
 - (i) non randomized test (iii) most powerful test
- (ii) randomized test (iv) none of these
- (h) A degree of an estimable parameter is
 - (i) smallest sample size

1

1/2			
10			

- (ii) smallest sample size for which the parameter is estimable
- (ii) an unbiased estimator based on smallest sample size
- (iv) none.

2 Answer any FIVE of the following (each question carries two marks)

14

- (a) Show that MP test is not unique.
- (b) Define Monotone Likelihood Ratio (MLR). Give at least one example of a distribution which does and which does not have the MLR property.
- (c) Let $X_1,...,X_n$ be a random sample of size n from

$$f(x, \theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}, \quad x > 0, \theta > 0$$

Obtain a UMP test of size α for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta \geq \theta_0$.

- (d) Define: (i) Similar test, (ii) Neyman structure test.
 Prove that every Neyman structure test is a similar test.
- (e) Define an ancillary statistic. Give an example.
- (f) State Basu's theorem. State its applications in testing of hypothesis.
- (g) State Wald's theorem.
- (h) For the SPRT with stopping bounds (A, B) and strength (α, β) show that

$$A \le \frac{1-\beta}{\alpha}$$
 and $B \ge \frac{\beta}{1-\alpha}$

- (i) Give the names of any four tests which are derived as likelihood ratio tests.
- 3 (a) State Neyman-Pearson (N-P) lemma and prove its sufficiency part only.
 - (b) Define UMP test. Derive an UMP test for testing composite null hypothesis against 6 composite alternative for distributions possessing MLR property.

OR

- (b) Let X₁,...,X_n be a r.s. from U(θ₁, θ₂) distribution. Obtain a test for H: θ₁ ≤ 6 0 vs K: θ₁ < 0 and name the derived test.</p>
- 4 (a) Let X has an exponential family of distribution. Show that for testing $H: \theta_1 \le \theta \le 6$ θ_2 vs K: $\theta < \theta_1$ or $0 > \theta_2$ with size α , a test of the form

$$\phi(x) = \begin{cases} 1 & \text{if} & T(x) < c_1 \text{ or } T(x) > c_2, \\ \gamma_i & \text{if} & T(x) = c_i, \text{ } i = 1, 2 \text{ } (c_1 < c_2), \\ 0 & \text{if} & c_i < T(x) < c_2, \end{cases}$$

is UMP unbiased, where the constants to be determined such that

$$E_{\theta_1}\varphi(x)=\alpha \ \ \text{and} \ \ E_{\theta_2}\varphi(x)=\alpha$$

2

(b) Explain the concepts: Similar test and Neyman structure test. Let $P(x) = c(\theta) \exp\{\theta \ t(x)\} h(x)$ be the p.d.f. of a random variable X. Obtain UMPU test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ using the above concepts.

OR

- (b) Let $X_1,...,X_n$ be a random sample of size n from $N(\mu,\sigma^2)$. Obtain the UMPU for 6 testing $H_0:\sigma^2=\sigma_0^2$ against $H_1:\sigma^2\neq\sigma_0^2$ using ancillary statistic.
- 5 (a) Define UMA confidence bounds. Giving suitable example, explain how it is 6 related to a UMP test.
 - (b) Define Likelihood Ratio Test (LRT) and specifying the under lying assumptions obtain its 6 asymptotic distribution in case of simple hypotheses.

OR

- (b) Let X₁,...,X_n be a random sample of size n from N(μ, σ²). Obtain the LRT test for testing H₀: μ = μ₀ against H₁: μ ≠ μ₀.
- 6 (a) If Z is an r.v. such that

 $P\{Z > 0\} > 0$ and $P\{Z < 0\} > 0$,

 $M(t) = E(e^{tZ})$ exist for any real value t,

and $E(Z) \neq 0$, then show that there exist a $t^* \neq 0$ such that $M(t^*) = 1$. Moreover, if E(Z) < 0, then $t^* > 0$; and if E(Z) > 0, then $t^* < 0$.

(b) State and prove Ward's fundamental identity.

OR

(b) Define U-statistic and derive its asymptotic distribution.

3