No. of Printed Pages: Z

[196]

SEAT No.__

SARDAR PATEL UNIVERSITY
M.Sc External Examination, Semester - IV.
Thursday Date: 25-10-2018
Time: 2:00 pm to 5.00 pm
Subject/Course Code: PSO4CSTA02.....
Statistical Quality Control Technique

Attempt following Q-1 In usual notation of SQC the warning limit is $\mu \pm \sigma$. $\mu \pm 2\sigma$. b $\mu \pm 3\sigma$. ¢ None-of-above. d In usual notation of SQC the action limit is $\mu \pm \sigma$. $\mu \pm 2\sigma$. b $\mu \pm 3\sigma$. c None-of-above. In usual notation # of non conforming in p.p.m. is 2700, then $PCR \geq 1$. a $PCR \leq 1$. b PCR = 1.¢ Non-of-above. d We recommend use of CUSUM control if it is require to detect shift of magnitude $\mu \pm 3\sigma$ or less. а b $\mu \pm 2\sigma$ or less. $\mu \pm 1.5\sigma$ or less. ¢ Non of above In context of SQC acceptance sampling plan use as tools for monitor quality. a improve quality. b audit quality... c Non-of-above. d In usual notation of residual analysis for factorial design use in SQC, $\hat{\beta}$ in terms of effect is effect a effect/2 b effect/2n Non-of-above. In context of SQC the SN ratio advocated by Taguchi. b Shewhart Fisher. c None-of-above.. In context of SQC the term robust mean good. a batter. b best. c Non-of-above. d

Q-2 Attempt any SEVEN

- (1) Consider following data: Specification is 100 ± 15 . Estimate $\hat{\sigma}_{gage}^2$ when $\hat{\sigma}_{product}^2 = 2.872$ and $\hat{\sigma}_{total}^2 = 4.717$.
- (2) Consider process with $\bar{S} = 3.6852$ and $\bar{X} = 50$ based on sample of size 4. Compute 0.01 probability

14

08

- (3) In usual notation of singly replicate 2⁴ design, the response of main effect of (b) is 11.13. BC interaction coded by X₁X₂ in regression model ŷ = 20 + (10)X₁ + (5)X₂ + (5)X₁X₂. Compute model estimate.
 (4) Compute tolerance limits of process such that 95% of burning rate (normally distributed) lie within this limits with probability 0.99. Based on sample of size 25, the mean and s.d are 50 and 1 respectively.
 (5) In usual notation write formula for 95% confidence interval of PCR.
- (6) Consider ten effective life (order) in minutes of a catalyst in chemical reaction: 1176, 1183, 1185, 1190, 1191, 1192, 1201, 1205, 1214 1nd 1220. In usual notation compute $\hat{\sigma}$.
- (7) In context of Taguchi philosophy react and justify: Operation on target and conformance are equally important in SQC.
- (8) Write full form for CUSUM chart.
- (9) Write demerit of singly replicate factorial design and way to overcome of it.
- Q-3 A Consider process with control limit (69,71) and based on sample of size four, the process mean is 70 with $\bar{S} = 7$. Compute α -risk and interpret.
- Q-3 B In context of SQC discuss: Gage and measurement system capability study use in SQC.

OR

- Q-3 B In context of SQC write note on (1) Active method and passive method. (2) Precision and Accuracy 06
- Q-4 A Consider process with control limit (61.4, 62.6) and based on sample of size four process mean is 61 with $\bar{R} = 2$. Compute β -risk and interpret.
- Q-4 B In context of SQC explain the terms: (1) Best (2) Noise (3) Quality (4) off- center process (5)

 Nominal (6) Target

OR

- Q-4 B Discuss all important cases of PCR use in SQC.
- Q-5 A For two process with n=5, $\hat{\mu}_A=\bar{\bar{X}}_A=102$, $\bar{S}_A=2$ and $\hat{\mu}_B=\bar{\bar{X}}_B=100$, $\bar{S}_B=3$ compute PCR, $PCR_K=06$ and PCR_{km} and interpret.
 - B Explain: (1) three aspect o acceptance sampling plan. (2) Chain sampling.

OR

06

06

06

Discuss: connection between control chart and testing of hypotheses.

- Q-6 A Discuss CUSUM chart.
 - B Write note on: (1) normal probability plot use in SQC. (2) Box plot use in SQC.

OR

B In usual notation explain 2^{3-1} design use in SQC.

-x-