[124/125]

SEAT No.

No. of Printed Pages: 4

SARDAR PATEL UNIVERSITY

M.Sc External Examination, Semester - I

Wednesday Date: 24-10-2018

Time: 10.00 am to 1.00 pm

Subject/Course Code: PSO1CSTA02/22

Matrix Algebra

Q-1 Attempt following

08

In usual notation orthogonal compliment of matrix A is denoted by

- a *A'*
- b A-
- $c A^+$
- d A^{\perp}

2 In usual notation for idempotent matrix A has property

- a A = A'.
- b $A = A^2$.
- c $A = A^3$.
- d Non-of-above.

3 In usual notation latent roots of matrix A is 1 or 0 if

- a Idempotent.
- b Singular.
- c Non-singular.
- d Non-of-above.

4 In usual notation length of vector for $\underline{X}' = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

- a 14.
- b $\sqrt{14}$.
- c $1/\sqrt{14}$
- d Non-of-above.
- 5 In usual notation λ denotes latent roots of matrix A then latent roots of $C^{-1}AC$ is

a
$$c\lambda$$
.

b
$$c\lambda^{-1}$$
.

c
$$c^{-1}\lambda$$
.

d Non-of-above.

6 In usual notation for square matrix A and B of order n, the rank of matrix AB; r_{AB}

$$a r_{AB} \geq r_A + r_B - n.$$

$$b r_{AB} = r_A + r_B - n.$$

$$c r_{AB} \le r_A + r_B - n..$$

d Non-of-above.

7 In usual notation $J_{r \times s} J_{s \times t}$ is

a
$$J_{r \times s} J_{s \times t} = r J_{r \times t}$$
.

b
$$J_{r \times s} J_{s \times t} = r s J_{r \times t}$$
.

* c
$$J_{r\times s}J_{s\times t}=sJ_{r\times t}$$
.

d Non-of-above..

8 In usual notation for centering matrix; C and $J = \underline{1} \, \underline{1}'$

a
$$CJ = JC \ge 0$$

b
$$CJ = JC = 0$$

c
$$CJ = JC > 0$$
.

d Non-of-above.

Q-2 Attempt any SEVEN

(1) In usual notation define centering matrix C_n .

(2) In usual notation give three interpret of $Dim(\tau) = 11$.

(3) Prove: For symmetric matrix, latent vectors corresponding to distinct latent roots are 1.

(4) Evaluate $\underline{1}'\underline{X}$, when $\underline{X}' = [1, 2, 3]$.

- (5) In usual notation react and justify: $\hat{\underline{X}} = (I H)\underline{Z}$ is solution vectors of $\underline{AX} = \underline{b} \neq \underline{0}$.
- (6) In usual notation A^- is g-inverse of matrix A if $A = AA^-A$. Define g-inverse of A.
- (7) In usual notation: S = X'X, $H = S^-S$. Write X^- ; g-inverse of X and show that $XX^-X = X$.
- (8) In usual notation react and justify: for centering matrix of order n has latent root $\lambda = 1$ with multiplicity m = (n 1).
- (9) In usual notation mean vector and variance covariance matrix of random \underline{X} is $E(\underline{X}) = \underline{\mu}$ and $\Sigma = V(\underline{X})$. Derive $E(\underline{X}\underline{X}')$ for both cases $\underline{\mu} = \underline{0}$ and $\underline{\mu} \neq \underline{0}$.
- Q-3 A In usual notation react and justify: for idempotent matrix M_{nXn} has property $r_{(I-M)} \ge n r_M.$
- Q-3 B In usual notation show that XS^-X' is invariant for any choice of S^- , g-inverse of S = X'X.

OR

- Q-3 B In usual notation derive LIN solution vectors for $A\underline{X} = \underline{0}$, where A_{nXm} , $r_A = k$.
- Q-4 A In usual notation explain: Equation of model. Derive solution for normal equation for full rank and non-full rank model.
- Q-4 B State and prove diagnability theorem.

OR

B In usual notation state and prove full rank factorization theorem.

06

CP-10-5

Q-5 A In usual notation show that : $tr(A) = \sum_{i=1}^{n} \lambda_i$ and $||A|| = \prod_{i=1}^{n} \lambda_i$.

06

Q-5 B State two definition of g-inverse of matrix and establish equivalence between them.

06

OR

Q-5 B State and prove necessary and sufficient condition for matrix A to be positive definite.

06

- Q-6 A In usual notation prove: The $\bot^{er} \underline{\gamma}$ from $\underline{\alpha}$ to \Im has property $\|\underline{\gamma}\| = \inf \|\underline{\alpha} \underline{X}\|$ for $\forall \underline{X} \in \Im$,
 - B In usual notation show that $r_{AB} \leq r_A$ and r_B .

06

OR

Q-6 B Consider system of non-homogeneous equations, $A\underline{X} = \underline{b}$. In usual notation show that $\|e(\underline{X})\| \geq \underline{b}'(H-I)\underline{b}$.

Q-6

1)

06

-X-4)