[]18]

SARDAR PATEL UNIVERSITY M.Sc. 3rd Semester (Surface Coating Technology) Examination (CBCS)

Monday, April 11, 2016 Time: 2:30 pm to 5:30 pm

Course No. : PS03ESCT01
Subject: Chemical Reaction Engineering

Total Marks: 70

N.B.	(1) Marks allotted to the question are on its RHS (2) Illustrate your answers wherever necessary with the help of neat sketches & chemical equations							
Q.1	Choo	se the correct op	tion					
(1)	In the given rate expression $-r_A = k C_A^{1/3} C_B^{5/3}$. What is the order of reaction?							
	a. 0		b. 1		c. 2	d. 3		
(2)				the initial concentration of the reactant. b. inversely proportional to d. none of these			(1)	
(3)	a. an	experimentally d	reaction is etermined quantity total stoichiometric	nun	nber of reactants	b. never fractional d. none of these	(1)	
, ,	For a a. zer c. sec	o	tion the unit of rate	b.	stant and rate of re first third	eaction are the same?	(1)	
(5)	a. B		the FOUR terms of		ss balance equation b. Semibatch d. PFR	on appear?	(1)	
(6)	There must be some product to catalyze the reaction in reaction. a. complex b. series c. autocatalytic d. homogenous catalyzed						(1)	
(7)	'-r _A ' a. Ba		gn of integration in b. Semi batch				(1)	
(8)		emical reaction of	ccurs, when the ene			elecule is the activation	(1)	
	a. le	ss than		b.	more than			
	c. eq	qual to or more tha	nn	d.	None of these			
Q.2 1	Answer Any seven of the following Define activation energy.							
2	Differentiate between order of reaction and molecularity.							
3	Enlist the methods used to analyses the kinetic data/rate data to determine order of reaction.							
4	What is half life time period of reaction?							
5	Explain Zeorth order and Autocatalytic reaction with example.							
6		ne Yield and Sele						
7			ristics of catalyst.					
8		Define catalyst promoter and inhibitor.						
9	Defin	ne Physisorption	and Chemisorption.					

Q.3(a)	Derive integrated rate equation for irreversible unimolecular – type First order reaction in terms of concentration and conversion. Also derive half-life of the reaction.							
(b)	The decomposition of NH_3 on tungsten wire at $856^{\circ}C$ yielded the following results. Total pressure (torr) 228 250 273 318 Time, sec. 200 400 600 1000 Determine the order of reaction and calculate the rate constant.	(6)						
OR								
(b)	Derive an integrated rate expression for the Autocatalytic reaction in term of concentration.							
Q.4(a)	Consider a gas phase reaction $2A = R + 2S$ with unknown kinetics. A space velocity of 1/min is required to achieve 90% conversion of A in a PFR. Find the space time and mean residence time in reactor.							
(b)	(b) Derive an integrated rate expression for the functioning of Adiabatic Batch reactor.							
	OR							
(b)	Derive an integrated rate expression for PFR.							
Q.5(a)	How are chemical reactors classified?							
(b)	Assuming a stoichiometry $A \rightarrow R$ for a first order gas phase reaction, the size (volume) of plug flow reactor required to achieve 99% conversion of a pure A is 32 lit. In fact, however the stoichiometry of the reaction is $A \rightarrow 3R$. For this corrected stoichiometry, find the required size of the same type reactor.							
	OR							
(b)	Derive an integrated rate equation for an isothermally operated CFSTR.							
Q.6(a)	What are the seven steps involved in kinetics of heterogeneous reactions? Derive the Global rate of reaction.							
(b)	Give a brief account of catalyst promoter, catalyst inhibitor and poisons.	(6)						
OR								
(b)	What are the absorption isotherms? Explain in brief Langmuir Adsorption Isotherm.	(6)						