(8) ## SARDAR PATEL UNIVERSITY | M.Sc. (Renewable Energy) | Examination, Second Semester | |--------------------------|------------------------------| |--------------------------|------------------------------| Day and Date: Friday, 24.04.2015 Session: Morning, Time: 10:30 to 13:30 Subject/ Course Code: PS02CREN03 / Paper No. 3 Subject/ Course Title: Hydro Energy and Chemical Energy Sources | (i) | The powe | r equation for the | hydro | electr | ic po | wer sta | ation is | given | by | | | | |-------|--|---|--------------|---------------------------------|---|--|-------------------------|------------------------------------|----------|-----------|-----------|------------| | | | = 9.81 QHη | | | | 9.81/ | | | -50 | | | | | | c. P | $= QH\eta / 9.81$ | | d. | ~P= | 9.810 | Η/η | | | | | | | (ii) | | Turb | nine i | e cuital | ble fo | or low l | nead h | vdro n | ower nl | nte | | | | (11) | a. | Reaction Turbine | | 3 Suita | b. | | l Flow | | | uits | | | | | c. | | _ | | d. | | Turbir | | | | | | | | C. | rube rurbine | | | u. | Duio | Turon | ic | | | | | | (iii) | Alkaline I | Fuel Cell (AFCs) u | | | | as | an ele | ectroly | te | | | | | | a. | NaCl | b. | | | | | | | | | | | | c. | H_2SO_4 | d. | $H_3P($ | O_4 | | | | | | | | | (iv) | Maximum | efficiency of Hyd | Iroge | n Oxy | gen f | nel cell | lis | 34 | | | | | | (11) | a. | 63 % | b. | | | uer cer | | | | | | | | | c. | 53 % | d. | | | | | | | | | | | | ~. | 22 /0 | u, | 05 / | 0 | | | | | | | | | 2.5 | | | | | | | | | | C 11 | | | | (v) | The proce | ess of splitting wa | ater i | | | en and | oxyge | en by | means o | of direct | electric | current is | | (v) | The proce | ess of splitting wa | ater i | nto hy | drog | | | en by | means o | of direct | electric | current is | | (v) | The proce | ess of splitting wa | ater i | nto hy | drog
Hyd | en and
drolysis | 5 | en by | means o | of direct | electric | current is | | | The proce
known as
a.
c. | Photolysis Photosynthesis | ater i | nto hy
b.
d. | drog
Hyd
Ele | drolysis | s
is | | | | electric | current is | | | The proce known as a. c. | Photolysis Photosynthesis | ater i | b. d. of the | drog
Hyd
Ele
Solid | drolysis
ctrolys | s
is | | | | electric | current is | | | The proce known as a. c. The opera | Photolysis Photosynthesis ting temperature ra | ater i | b. d. of the b. | Hydrog
Elec
Solid | drolysis
ctrolys
I Oxide
100°C | s
is
Fuel (| | | | electric | current is | | | The proce known as a. c. | Photolysis Photosynthesis | ater i | b. d. of the b. | Hydrog
Elec
Solid | drolysis
ctrolys | s
is
Fuel (| | | | electric | current is | | (vi) | The proce known as a. c. The opera a. c. | Photolysis Photosynthesis ting temperature ra | ater i | b. d. of the b. d. | Hydrog
Elec
Solid
50-1 | drolysis
etrolys
I Oxide
100°C
-210°C | s
is
Fuel (| Cell is | | | | | | (vi) | The proce known as a. c. The opera a. c. | Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C | ater i | b. d. of the b. d. | Hydrog
Elec
Solid
50-1
160 | drolysis
etrolys
I Oxide
100°C
-210°C | Fuel (| Cell is | | | | | | (vi) | The proce known as a. c. The opera a. c. As per Mi | Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C | ater i | b. d. of the b. d. | Hydrog
Elec
Solid
50-1
160
Ener | drolysis
ctrolys
I Oxide
100°C
-210°C | Fuel (cro hy | Cell is | | | | | | (vi) | The proce known as a. c. The opera a. c. As per Mi a. c. | Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C nistry of New and 101-1000 kW 1-25 MW | ange | b. d. of the b. d. ewable b. d. | Hyd
Elec
Solid
50-1
160
Ene
Ur | drolysis
ctrolys
1 Oxide
100 °C
-210 °C
rgy, mi
toto 100
one of t | Fuel (cro hy kW he abo | Cell is
dro po
ve | wer stat | ion has t | the capac | ity of | | (vi) | The proce known as a. c. The opera a. c. As per Mi a. c. i) The comb | Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C nistry of New and 101-1000 kW | ange
Rene | b. d. of the b. d. ewable b. d. | Hyd
Elec
Solid
50-1
160
Ener
UI
No | drolysis
ctrolys
1 Oxide
100 °C
-210 °C
rgy, mi
toto 100
one of t | ero hy kW he abo | Cell is
dro po
ve | wer stat | ion has t | the capac | ity of | | (vi) | The proce known as a. c. The opera a. c. As per Mi a. c. i) The comb continuity | Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C nistry of New and 101-1000 kW 1-25 MW | ange
Rene | b. d. of the b. d. ewable b. d. | Hyd
Elec
Solid
50-1
160
Ener
UI
No | drolysis
ctrolys
1 Oxide
100 °C
-210 °C
rgy, mi
oto 100
one of t | ero hy kW he abo | Cell is
dro po
ve
alled a | wer stat | ion has t | the capac | ity of | | Q-2 | swer any seven short questions | (14) | |-----|--|------| | | a. Give the classification of water turbines b. Explain tube turbine with suitable diagram c. It is required to develop 15000 kW at 214 RPM under head of 100 m with single runner. What type of turbine should be installed? d. Explain principle operation of acidic fuel cell with suitable figure e. Give different type of fuel cell with their characteristics f. Give possible areas of hydrogen use g. Explain Solar wind hybrid system in brief h. Explain mycrohydel PV in brief i. Describe in brief solar energy method for H₂ production | | | Q-3 | A. Explain working of Francis water turbine with suitable diagrams | (6) | | | B. Explain major components of small hydropower project | (6) | | | OR Explain with suitable diagram | (6) | | Q-4 | A. Explain Alkaline Fuel Cell (AFCs) with suitable diagram | (6) | | | B. Give advantages of fuel cell power plant | (6) | | | OR Derive expression for output, efficiency and EMF of fuel cell | (6) | | Q-5 | A. Explain Biogas -solar thermal hybrid system with case study | (6) | | | B. PV hybrid with Diesel Generator | (6) | | | OR Explain the need of hybrid system and give type of hybrid system | (6) | | Q-6 | A. Explain Westinghouse electrochemical thermal sulfur cycle with suitable diagram | (6) | | | B. What is electrolysis? Describe electrolytic production of hydrogen with suitable diagram | (6) | | | OR What are the different methods for hydrogen storage? | (6) | | | | | —×—