(8)

SARDAR PATEL UNIVERSITY

M.Sc. (Renewable Energy)	Examination, Second Semester
--------------------------	------------------------------

Day and Date: Friday, 24.04.2015

Session: Morning, Time: 10:30 to 13:30

Subject/ Course Code: PS02CREN03 / Paper No. 3

Subject/ Course Title: Hydro Energy and Chemical Energy Sources

(i)	The powe	r equation for the	hydro	electr	ic po	wer sta	ation is	given	by			
		= 9.81 QHη				9.81/			-50			
	c. P	$= QH\eta / 9.81$		d.	~P=	9.810	Η/η					
(ii)		Turb	nine i	e cuital	ble fo	or low l	nead h	vdro n	ower nl	nte		
(11)	a.	Reaction Turbine		3 Suita	b.		l Flow			uits		
	c.		_		d.		Turbir					
	C.	rube rurbine			u.	Duio	Turon	ic				
(iii)	Alkaline I	Fuel Cell (AFCs) u				as	an ele	ectroly	te			
	a.	NaCl	b.									
	c.	H_2SO_4	d.	$H_3P($	O_4							
(iv)	Maximum	efficiency of Hyd	Iroge	n Oxy	gen f	nel cell	lis	34				
(11)	a.	63 %	b.			uer cer						
	c.	53 %	d.									
	~.	22 /0	u,	05 /	0							
2.5										C 11		
(v)	The proce	ess of splitting wa	ater i			en and	oxyge	en by	means o	of direct	electric	current is
(v)	The proce	ess of splitting wa	ater i	nto hy	drog			en by	means o	of direct	electric	current is
(v)	The proce	ess of splitting wa	ater i	nto hy	drog Hyd	en and drolysis	5	en by	means o	of direct	electric	current is
	The proce known as a. c.	Photolysis Photosynthesis	ater i	nto hy b. d.	drog Hyd Ele	drolysis	s is				electric	current is
	The proce known as a. c.	Photolysis Photosynthesis	ater i	b. d. of the	drog Hyd Ele Solid	drolysis ctrolys	s is				electric	current is
	The proce known as a. c. The opera	Photolysis Photosynthesis ting temperature ra	ater i	b. d. of the b.	Hydrog Elec Solid	drolysis ctrolys I Oxide 100°C	s is Fuel (electric	current is
	The proce known as a. c.	Photolysis Photosynthesis	ater i	b. d. of the b.	Hydrog Elec Solid	drolysis ctrolys	s is Fuel (electric	current is
(vi)	The proce known as a. c. The opera a. c.	Photolysis Photosynthesis ting temperature ra	ater i	b. d. of the b. d.	Hydrog Elec Solid 50-1	drolysis etrolys I Oxide 100°C -210°C	s is Fuel (Cell is				
(vi)	The proce known as a. c. The opera a. c.	Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C	ater i	b. d. of the b. d.	Hydrog Elec Solid 50-1 160	drolysis etrolys I Oxide 100°C -210°C	Fuel (Cell is				
(vi)	The proce known as a. c. The opera a. c. As per Mi	Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C	ater i	b. d. of the b. d.	Hydrog Elec Solid 50-1 160 Ener	drolysis ctrolys I Oxide 100°C -210°C	Fuel (cro hy	Cell is				
(vi)	The proce known as a. c. The opera a. c. As per Mi a. c.	Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C nistry of New and 101-1000 kW 1-25 MW	ange	b. d. of the b. d. ewable b. d.	Hyd Elec Solid 50-1 160 Ene Ur	drolysis ctrolys 1 Oxide 100 °C -210 °C rgy, mi toto 100 one of t	Fuel (cro hy kW he abo	Cell is dro po ve	wer stat	ion has t	the capac	ity of
(vi)	The proce known as a. c. The opera a. c. As per Mi a. c. i) The comb	Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C nistry of New and 101-1000 kW	ange Rene	b. d. of the b. d. ewable b. d.	Hyd Elec Solid 50-1 160 Ener UI No	drolysis ctrolys 1 Oxide 100 °C -210 °C rgy, mi toto 100 one of t	ero hy kW he abo	Cell is dro po ve	wer stat	ion has t	the capac	ity of
(vi)	The proce known as a. c. The opera a. c. As per Mi a. c. i) The comb continuity	Photolysis Photosynthesis ting temperature ra 70-100 °C 800-1000 °C nistry of New and 101-1000 kW 1-25 MW	ange Rene	b. d. of the b. d. ewable b. d.	Hyd Elec Solid 50-1 160 Ener UI No	drolysis ctrolys 1 Oxide 100 °C -210 °C rgy, mi oto 100 one of t	ero hy kW he abo	Cell is dro po ve alled a	wer stat	ion has t	the capac	ity of

Q-2	swer any seven short questions	(14)
	 a. Give the classification of water turbines b. Explain tube turbine with suitable diagram c. It is required to develop 15000 kW at 214 RPM under head of 100 m with single runner. What type of turbine should be installed? d. Explain principle operation of acidic fuel cell with suitable figure e. Give different type of fuel cell with their characteristics f. Give possible areas of hydrogen use g. Explain Solar wind hybrid system in brief h. Explain mycrohydel PV in brief i. Describe in brief solar energy method for H₂ production 	
Q-3	A. Explain working of Francis water turbine with suitable diagrams	(6)
	B. Explain major components of small hydropower project	(6)
	OR Explain with suitable diagram	(6)
Q-4	A. Explain Alkaline Fuel Cell (AFCs) with suitable diagram	(6)
	B. Give advantages of fuel cell power plant	(6)
	OR Derive expression for output, efficiency and EMF of fuel cell	(6)
Q-5	A. Explain Biogas -solar thermal hybrid system with case study	(6)
	B. PV hybrid with Diesel Generator	(6)
	OR Explain the need of hybrid system and give type of hybrid system	(6)
Q-6	A. Explain Westinghouse electrochemical thermal sulfur cycle with suitable diagram	(6)
	B. What is electrolysis? Describe electrolytic production of hydrogen with suitable diagram	(6)
	OR What are the different methods for hydrogen storage?	(6)

—×—