SARDAR PATEL UNIVERSITY

M. Sc. (Physics) 3rd Semester Examination Monday, 22nd October, 2018 Time: 02:00 pm to 05:00 pm

Subject: PS03CPHY01 [Quantum Mechanics-II]

Total Marks: 70

Motor	(1)	Figures	to	the	right	indicate	marke
inote: (rigures	ω	me	rigiii	marcate	marks

(2) Symbols have their traditional meaning.

Q:1 Attempt all of the following Multiple choice type questions. [01 mark each] [08]

- (1) For Pauli matrices $\sigma_-\sigma_+ =$ _____.
 - (a) $2(1-\sigma_{r})$

(c) $2(1+\sigma_{*})$

(b) 0

(d) 1

$$(2) \qquad (J_{+} + J_{-}) =$$

(a) 2 Jz

(c) 2 Jx

(b) 0

(d) 2 Jy

(3) The quantum Liouville equation is given as

(a) $i\hbar \frac{d\hat{\rho}}{dt} = [\hat{H}, \hat{\rho}]$

(c) $i\hbar \frac{d\hat{\rho}}{dt} = \hat{H}\hat{\rho}$

(b) $\frac{d\hat{\rho}}{dt} = [\hat{H}, \hat{\rho}]$

(d) $i\hbar \frac{d\hat{\rho}}{dt} = Tr(\rho^2)$

(4) The dipole approximation is given by

(a) $\nabla \cdot A = 1$

(c) $\exp(i\vec{k}\cdot\vec{r}) \approx 1$

(b) $\nabla \cdot A = 0$

(d) $\exp(i\vec{k}\cdot\vec{r})\approx 0$

(5) The energy spectrum of a free Dirac particle consists of

(a) Dirac particles.

(c) four branches.

(b) two branches.

(d) one branch.

(6) The Pauli spin matrix $\sigma_z =$

(a) $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

(c) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

(b) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

(d) $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

(7) In Natural units ($\hbar = c = 1$), dimensional formula for electric charge is _____.

(a) $M^{I}L^{0}T^{0}$

(c) $M^{1}L^{0}T^{-1}$

(b) $M^{1}L^{1}T^{0}$

(d) $M^0L^0T^0$

(8)	•	Klein-Gordon field corresponding to spin $s = $								
	(a)	1/2 (c) 5/2 3/2 (d) 0								
	(b)	3/2 (d) 0								
Q:2		Answer any 7 of the following 9 questions briefly. [02 marks each]	14]							
	1	Define Clebsh-Gorden coefficients.								
2 3		Explain phase convention.								
		Define harmonic and constant perturbation.								
4 5 6		Explain propagator. Describe the scattering operator.								
		What is the drawback of the Klein-Gorden equation. Write Dirac's relativistic Hamiltonian.								
0										
	7	Explain Schrödinger picture.								
	8	Define field. Write its coordinate.								
	9	Give \hat{a} and \hat{a}^{\dagger} operators in terms of position and linear momentum								
		operators. Prove that $\left[\hat{a}^{\dagger},\hat{a}\right] = -1$.								
		operators. Trove that [a,,a]								
Q:3 (a)	(a)	Obtain the eigen value spectrum and J^2 and J_z .	[6]							
۷.5	(4)	į								
	(b)	Write down the Pauli spin matrices and describe their properties. Show that	[6]							
		$(\vec{\sigma} \cdot \vec{r})(\vec{\sigma} \cdot \vec{p}) = \vec{r} \cdot \vec{p} + i\vec{\sigma} \cdot \vec{L}$								
		OR								
	(b)	Discuss the coupling of two spin-1/2 particles and obtain the spin wave function corresponding to the singlet and triplet states.	[6]							
Q:4	(a)	Obtain the general solution of time-dependent Schrödinger equation.	[6]							
			F63							
	(b)	Considering elastic scattering of a particle by a potential, derive expression	[o]							
		for probability per unit of scattering and differential scattering cross-								
		section.								
		OR								
	(b)	Using time dependent perturbation theory, deduce solution for transition	[6]							
		amplitude and establish Fermi's golden rule.								
Q:5	(a)	Show that the plane wave solution of the equation gives	[6]							
Q.5	(")	$E = \pm (c^2 \vec{p}^2 + m^2 c^4)^{1/2}$. Interpret these solutions for the relativistic wave								
		equation in terms of $P(\bar{x},t)$ and $S(\bar{x},t)$.								
		oquation in terms of a (17,1) that a (17,1)								
	(b)	Write a note on Heisenberg picture.	[6]							
	` '	OR	ርፖን							
	(b)	Obtain the plane wave solutions of the Dirac equation.	[6]							


2

- Q:6 (a) Derive the Lagrangian classical field equation. Deduce the classical field [6] equation analogous to Langrange's equation for a system of particles.
 - (b) Derive Hamiltonian form of field equation. For a dynamical physical [6] quantity F as a functional of ψ and Π , obtain its time rate of change and introduce the definition of Poisson bracket for field coordinates.

OR

(b) Explain second quantization? Deduce the time dependent Schrödinger [6] equation, using Hamiltonian form for field equation with Lagrangian density as $\pounds = i\hbar \psi^* \dot{\psi} - \frac{\hbar^2}{2m} (\nabla \psi^*) (\nabla \psi) - V(\vec{r}, t) \psi \psi^*$

