SEAT No.

[111]

No. of printed pages: 02

SARDAR PATEL UNIVERSITY
M.Sc. (PHYSICS) (IIIrd – Semester) Examination
Day & Date: Wednesday & 27/03/2019
Time: 10:00 AM to 01:00 PM

Title: MAGNETIC AND OPTICAL PROPERTIES IN CONDENSED MATTER

Course Code: PS03EPHV02

Instruction: Figures to the right indicate marks.	
Q.1	Total Marks: 70 Write answer of all questions by showing your choice against the question [8] number.
(1)	Excitation may be achieved by bombardment with electrons is called luminescence.
	(a) Electro (b) cathodo (c) thermo (d) chemi
(2)	The equation $I(t) = I_0 \exp\left(-\frac{t}{\tau}\right)$ is used to calculate the intensity of the luminescent material
	for
	(c) power decay law (d) concentration dependence
(3)	Using R.W. Wood experiment, Bunsen flame contain to obtain bright yellow patch on screen
	(a) KCl (b) NaCl (c) MgCl (d) FeCl ₂
(4)	In Mossbauer experiment the energy of the gamma ray should lie between $\frac{\text{keV}}{\text{(a) }10-200}$ (b) 300 -400 (c) $\frac{500-600}{\text{(d) }700-800}$
(5)	The electrical conductivity of the perfect dielectric materials is almost (a) $-\infty$ (b) 0 (c) ∞ (d) 1
(6)	Dielectric constant of Mica varies in between
	(a) 5 and 7.5 (b) 5 and 7 (c) 5.5 and 7.5 (d) 5.5 and 7
(7)	Magnons are quantized spin waves oftype. (a) Longitudinal (b) Transverse (c) standing (d) none of them
(8)	In magnetite, Fe ₃ O ₄ sample which ions moments cancels out within itself; (a) O ²⁻ (b) Fe ²⁺ (c) Fe ³⁺ (d) none of them
Q.2 (1)	Attempt any Seven of the followings: [14] What is luminescence? Define photoluminescence and chemilumenescence.
(2)	How radiationless transition is possible in phosphors?
(3)	Explain Gudden-Pohl effect in luminescent material.
(4)	Mention factors affecting to broadening the spectral line in Mossbauer spectroscopy.

(5) Describe two methods for measurements of dielectric constant. **(6)** Explain "skin depth" 'δ' of a metal in propagation of light in conducting media. In ferromagnetic ordering discuss Curie point and mean field approximation. **(7) (8)** Explain in brief damped oscillatory solutions of Bloch's equations of motion. (9)Describe "Knight shift" for NMR. Can absorption and emission spectra of pure KCl crystal and thallium doped KCl [6] Q.3(a)crystal remain same? Why? Explain it in detail using suitable diagrams. Describe the power decay law for luminescent material. Define thermo-Q.3(b)[6] luminescence and glow curve and obtain the expression of variation of intensity with temperatures for this material. OR Q.3(b)Explain the applications of the luminescent material in detail. [6] Q.4(a) What is Mossbauer effect? Give the detail about mechanism of Mossbauer effect [6] and also mention requirements of this effect. Q.4(b) Obtain the expression of Debye-Waller factor and show its temperature [6] dependence also. OR Explain magnetic hyperfine interactions and quadrupole interaction in detail. Q.4(b)[6] Describe in detail different light absorption processes. Q.5(a)[6] Write a short note on photoconductivity. Q.5(b)[6] OR What is dielectric loss and loss angle? Show that the energy absorbed by the Q.5(b)[6] medium is directly proportional to the imaginary part of complex dielectric constant. Explain the term magnons in ferromagnet. Derive the dispersion relation. Q.6(a) [6] Q.6(b) Explain antiferromagnetic order in detail with the help of suitable example. [6] OR Q.6(b) Define resonance. Explain nuclear quadrupole resonance and ferromagnetic

XXXXXXXXXX

resonance in detail.