SARDAR PATEL UNIVERSITY M.Sc. (Physics) (IIIrd –Semester) Examination Day & Date: Wednesday & 13/04/2016 Time: 02.30 p.m. to 05.30 p.m. Subject: MAGNETIC AND OPTICAL PROPERTIES IN CONDENSED MATTER | | Instruction: Paper No.: PS03EPHY02 | K | |-----|---|--------| | | (a) Figure to the right indicate marks. Total Mark | s : 70 | | Q.1 | Write answer of all questions by showing your choice against the question number. | [8] | | | (1) In a tri-colour picture tube in television is made of colours. (a) green, blue & red | | | | (2) The carrier injection luminescence phenomena was discovered by : (a) Gudden-Pohl (b) Destriau (c) Hynes-Briggs (d) Johnson – Williams | | | | (3) If we want to perform Mossbauer experiment, the energy of the gamma | | | | (a) 100-200 keV (b) 10-100 keV (c) 10 -200 keV (d) 20-200 keV | | | | (4) In Mossbauer experiment, detector is made of (a) Ir (b) NaCl (c) Te (d) NaI | | | | (5) The transition of electron occurs within the band in type of transition. | | | | (a) direct gap (b) indirect gap (c) interband (d) intraband | | | | (6) The metals are for electromagnetic radiation with frequency higher than plasma frequency. | | | | (a) transparent (b) opaque (c) translucent (d) luminescent | | | | (7) The fundamental condition for magnetic resonance is (a) $\omega_0 = \gamma B_0$ (b) $\omega_0 = \gamma M B_0$ (c) $\omega_0 = \mu B_0$ (d) $\omega_0 = \gamma \mu B_0$ | | | | (8) is a typical ferrimagntic material. (a) Fe ₂ O ₃ (b) FeO (c) Fe ₃ O ₄ (d) Fe ₂ O ₂ | | | Q.2 | Attempt any Seven of the followings: (i) Explain thermoluminescence and glow curve. (ii) Describe Franck-Condon principle in luminescent material in brief. (iii) Why efficiency of the luminescent material is depends on concentration of activator atoms? | [14] | | | (iv) Mention important requirements to perform Mossbauer effect experiment (v) With help of suitable diagram, explain R.W. Wood experiment to observe resonant absorption. (vi) Using necessary diagram, explain in brief fundamental absorption process in semiconductor. (vii) Explain absorption process involving impurities in semiconductor. (viii) Describe anti-ferromagnetic magnons in brief. (ix) Explain ferromagnetic order. | t. | |--------|--|-----| | Q.3(a) | What is luminescence? Explain different types of luminescence. Obtain the equation for temperature dependent luminescence efficiency. | [6 | | Q.3(b) | OR | [6 | | Q.3(b) | Discuss characteristics and non-characteristics of luminescence using necessary diagram in detail. | [6] | | Q.4(a) | Explain magnetic hyperfine interactions and quadrupole interaction in detail. | [6] | | Q.4(b) | Discuss in detail natural broadening and Doppler broadening. What are the factors are affected to broaden the spectral line? OR | [6] | | Q.4(b) | Obtain an expression of Debye - Waller factor and also show its temperature dependence. | [6] | | Q.5(a) | Explain propagation of light in conducting media in detail. | [6] | | Q.5(b) | Discuss in detail the theory of dielectrics in alternating field. Obtain the expression for the dielectric constant in terms of the frequency relaxation time. | [6] | | Q.5(b) | OR How are the insulators classified? Describe various parameters and importance of an insulating materials in detail. | [6] | | Q.6(a) | Define magnons. Explain thermal excitation of magnons in detail. | [6] | | Q.6(b) | What is resonance? Describe spin wave resonance in detail. OR | [6] | | Q.6(b) | Distinguish between ferromagnets and ferrimagnets? Explain Curie temperature and susceptibility of ferrimagnets in detail | [6] | XXXXXXXXXX (2)