C94] ## SARDAR PATEL UNIVERSITY M. Sc. Physics IIIrd Semester Examination Tuesday, Date: 05-04-2016 Time: 02.30 to 5.30 PM CBCS Course No.: PS03CPHY01 Subject: Quantum Mechanics-II | Note: | Symbole | have | their | uenal | meaning. | |-------|---------|------|-------|-------------|---| | Tiou. | SYMBOUS | marc | | tag ta ta a | *** C ** ** * * * * * * * * * * * * * * | Total Marks: 70. ## Q.1 Write answers of all eight questions in a table form by showing your choice against the question number. (8) | (1) | The gyromagnetic ratio associated with spin has the | value than the on | |-----|---|-------------------| | | associated to orbital motion. | | - (a) same (b) double (c) half (d) four-times - (2) Which of the following transition is electric dipole allowed? - (a) $1s \rightarrow 2s$ (b) $2p \rightarrow 3d$ (c) $3s \rightarrow 4f$ (d) $3s \rightarrow 5d$ - (3) The coordinate representation of time evolution operator in *interaction* picture leads to ______. - (a) Dirac matrix mechanics (b) Schrödinger representation - (c) uncertainty principle (d) Feynman diagram - (4) For Pauli matrices; $[\sigma_x, \sigma_y] =$ _____. Take h = 1. - (a) $-i\sigma_z$ (b) $-i\sigma_+$ (c) $i\sigma_+$ (d) $i\sigma_z$ - (5) The spin-orbit interaction Hamiltonian is directly proportional to ______ (a) $r \frac{dV}{dr}$ (b) $\frac{1}{r} \frac{dV}{dr}$ (c) $\frac{1}{r^2} \frac{dV}{dr}$ (d) $r^2 \frac{dV}{dr}$ - (6) In the matrix representation of angular momentum $j = \frac{1}{2}$, $J_{+} =$ ____. Take $\hbar = 1$. - (a) $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ - (7) In Natural units ($\hbar = c = 1$), dimensional formula for energy E is (a) $M^1L^0T^0$ (b) $M^1L^1T^0$ (c) $M^1L^1T^0$ (d) $M^1L^0T^1$ - (8) For Dirac matrices α_x , α_y , α_z and β , the trace of α_x , i.e., tr α_x , is ______. (a) tr α_y (b) tr α_x (c) tr α_z (d) tr β ## Q.2 Answer any seven questions. (14) - (1) Prove that $s_{+}\alpha = 0$, and also give reason for it. - (2) For two angular momenta $\overrightarrow{J_1}$ and $\overrightarrow{J_2}$, prove that the difference $\overrightarrow{J_1} \overrightarrow{J_2}$ does not represent angular momentum. - (3) Using time dependent Schrödinger equation, deduce the integral form for propagator. - (4) Prove that $c\alpha$ can be interpreted as the velocity operator. Here, α stands for Dirac matrix. - (5) Give difference between Schrödinger picture and Heisenberg picture. - (6) Show that the angular momentum is not a constant of motion in Dirac theory. - (7) Write conditions for field co-ordinates and conjugate momentum to quantize the field. - (8) Define *field*. Explain its co-ordinates. | | (9) | phenomena? | | |-----|--|--|-----| | Q.3 | (a) | For $[S^2, s_z] = 0$, expand any spin state $ \chi\rangle$ in terms of complete orthonormal | (6) | | | (b) | eigenstates $ s, m_s\rangle$. Obtain spin wave functions for $s = \frac{1}{2}$. Derive an expression for non-relativistic Hamiltonian including spin. Obtain an expression for corresponding energy eigenvalues. OR | (6) | | | (b) | Explain the construction of the basis states for a system defined by addition of two angular momenta, $\vec{J_1}$ and $\vec{J_2}$, when (i) $[\vec{J_1}, \vec{J_2}] = 0$ and (ii) $[\vec{J_1}, \vec{J_2}] \neq 0$. What are CG coefficients? | (6) | | Q.4 | (a) | For the case of constant perturbation show that the transition probability is given by $\left a_f^{(4)}(t)\right ^2 = \frac{\left H_f\right ^2}{\hbar^2} \frac{4\sin^2(\frac{\omega_f t}{2})}{\omega_f^2}$, and explain it. | (6) | | | (b) | Explain scattering of a particle by potential, and derive an equation for differential scattering cross section. OR | (6) | | | (b) | Explain the time-dependent perturbation technique. Discuss with schematic diagram the first and second order transitions. | (6) | | Q.5 | (a) | (i) Derive relativistic wave equation. | (3) | | 4.0 | (ii) Briefly explain Dirac relativistic Hamiltonian. | | | | | (b) | Write note on Schrodinger picture for time evolution of quantum system. OR | (6) | | | (b) | Obtain the positive and negative energy solutions of a free Dirac particle and interpret these solutions. | (6) | | Q.6 | (a) | Derive classical field equation in terms of Lagrangian density (\mathcal{L}). Using the notion of functional derivative, deduce $\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \Psi} \right) - \frac{\partial L}{\partial \Psi} = 0$. | (6) | | | (b) | Derive classical field equation in Hamiltonian form. OR | (6) | | | (b) | Using an expansion $\Psi(\vec{r};t) = \sum_k a_k(t)u_k(\vec{r})$, derive $N_k = a_k^{\dagger}a_k$. Prove that the eigenvalues of N_k are all positive integers. Define the <i>vacuum state</i> . Show that $[a_k, N_k] = a_k$. | (6) |