C94]

SARDAR PATEL UNIVERSITY

M. Sc. Physics IIIrd Semester Examination

Tuesday, Date: 05-04-2016 Time: 02.30 to 5.30 PM

CBCS Course No.: PS03CPHY01 Subject: Quantum Mechanics-II

Note:	Symbole	have	their	uenal	meaning.
Tiou.	SYMBOUS	marc		tag ta ta a	*** C ** ** * * * * * * * * * * * * * *

Total Marks: 70.

Q.1 Write answers of all eight questions in a table form by showing your choice against the question number. (8)

(1)	The gyromagnetic ratio associated with spin has the	value than the on
	associated to orbital motion.	

- (a) same (b) double (c) half (d) four-times
- (2) Which of the following transition is electric dipole allowed?
- (a) $1s \rightarrow 2s$ (b) $2p \rightarrow 3d$ (c) $3s \rightarrow 4f$ (d) $3s \rightarrow 5d$
- (3) The coordinate representation of time evolution operator in *interaction* picture leads to ______.
 - (a) Dirac matrix mechanics (b) Schrödinger representation
 - (c) uncertainty principle (d) Feynman diagram
- (4) For Pauli matrices; $[\sigma_x, \sigma_y] =$ _____. Take h = 1.
 - (a) $-i\sigma_z$ (b) $-i\sigma_+$ (c) $i\sigma_+$ (d) $i\sigma_z$
- (5) The spin-orbit interaction Hamiltonian is directly proportional to ______

(a) $r \frac{dV}{dr}$ (b) $\frac{1}{r} \frac{dV}{dr}$ (c) $\frac{1}{r^2} \frac{dV}{dr}$ (d) $r^2 \frac{dV}{dr}$

- (6) In the matrix representation of angular momentum $j = \frac{1}{2}$, $J_{+} =$ ____. Take $\hbar = 1$.
 - (a) $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
- (7) In Natural units ($\hbar = c = 1$), dimensional formula for energy E is

 (a) $M^1L^0T^0$ (b) $M^1L^1T^0$ (c) $M^1L^1T^0$ (d) $M^1L^0T^1$
- (8) For Dirac matrices α_x , α_y , α_z and β , the trace of α_x , i.e., tr α_x , is ______.

 (a) tr α_y (b) tr α_x (c) tr α_z (d) tr β

Q.2 Answer any seven questions.

(14)

- (1) Prove that $s_{+}\alpha = 0$, and also give reason for it.
- (2) For two angular momenta $\overrightarrow{J_1}$ and $\overrightarrow{J_2}$, prove that the difference $\overrightarrow{J_1} \overrightarrow{J_2}$ does not represent angular momentum.
- (3) Using time dependent Schrödinger equation, deduce the integral form for propagator.
- (4) Prove that $c\alpha$ can be interpreted as the velocity operator. Here, α stands for Dirac matrix.
- (5) Give difference between Schrödinger picture and Heisenberg picture.
- (6) Show that the angular momentum is not a constant of motion in Dirac theory.
- (7) Write conditions for field co-ordinates and conjugate momentum to quantize the field.
- (8) Define *field*. Explain its co-ordinates.

	(9)	phenomena?	
Q.3	(a)	For $[S^2, s_z] = 0$, expand any spin state $ \chi\rangle$ in terms of complete orthonormal	(6)
	(b)	eigenstates $ s, m_s\rangle$. Obtain spin wave functions for $s = \frac{1}{2}$. Derive an expression for non-relativistic Hamiltonian including spin. Obtain an expression for corresponding energy eigenvalues. OR	(6)
	(b)	Explain the construction of the basis states for a system defined by addition of two angular momenta, $\vec{J_1}$ and $\vec{J_2}$, when (i) $[\vec{J_1}, \vec{J_2}] = 0$ and (ii) $[\vec{J_1}, \vec{J_2}] \neq 0$. What are CG coefficients?	(6)
Q.4	(a)	For the case of constant perturbation show that the transition probability is given by $\left a_f^{(4)}(t)\right ^2 = \frac{\left H_f\right ^2}{\hbar^2} \frac{4\sin^2(\frac{\omega_f t}{2})}{\omega_f^2}$, and explain it.	(6)
	(b)	Explain scattering of a particle by potential, and derive an equation for differential scattering cross section. OR	(6)
	(b)	Explain the time-dependent perturbation technique. Discuss with schematic diagram the first and second order transitions.	(6)
Q.5	(a)	(i) Derive relativistic wave equation.	(3)
4.0	(ii) Briefly explain Dirac relativistic Hamiltonian.		
	(b)	Write note on Schrodinger picture for time evolution of quantum system. OR	(6)
	(b)	Obtain the positive and negative energy solutions of a free Dirac particle and interpret these solutions.	(6)
Q.6	(a)	Derive classical field equation in terms of Lagrangian density (\mathcal{L}). Using the notion of functional derivative, deduce $\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \Psi} \right) - \frac{\partial L}{\partial \Psi} = 0$.	(6)
	(b)	Derive classical field equation in Hamiltonian form. OR	(6)
	(b)	Using an expansion $\Psi(\vec{r};t) = \sum_k a_k(t)u_k(\vec{r})$, derive $N_k = a_k^{\dagger}a_k$. Prove that the eigenvalues of N_k are all positive integers. Define the <i>vacuum state</i> . Show that $[a_k, N_k] = a_k$.	(6)