No. of Printed Pages: 02
(A-103)
SARDAR PATEL UNIVERSITY
M. Sc. Physics III ${ }^{\text {rd }}$ Semester Examination

Tuesday, Date: 21-04-2015 Time: 02,30 P.M. to 05.30 P.M.
Course No. CBCS: PS03CPHY01
Subject: Qu tum Mechanics-II
Note: Symbols have their usual meaning.
Total Marks: 70
Q. 1 Write answers of all eight question in a table form by showing your choice Against the question number.
(1) The co-ordinate representation of time evolution operator in interaction picture leads to \qquad .
(a) Dirac matrix mechanics
(b) Schrödinger representation
(c) uncertainty principle
(d) Feynman diagram
(2) General criterion to apply Born approximation is \qquad .
(a) K.E. \ll V(r)
(b) K.E. $=\mathrm{V}(\mathrm{r})$
(c) K.E. $\gg \mathrm{V}(\mathrm{r})$
(d) K.E. $=0$
(3) For Pauli matrices; $\left[\sigma_{x}, \sigma_{y}\right]=$ \qquad , Take $\mathrm{h}=1$.
(a) $-i \sigma_{z}$
(b) $-i \sigma_{+}$
(c) $i \sigma_{+}$
(d) $i \sigma_{z}$
(4) Unit of Einstein coefficient A is \qquad .
(a) sec
(b) sec^{-1}
(c) $\sec ^{2}$
(d) $\mathrm{J} / \mathrm{sec}$
(5) In the matrix representation of angular momentum $j=1 / 2, J_{+}=$ \qquad . Take $\hbar=1$.
(a) $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
(6) $\left[i \hbar \frac{\partial}{\partial t}-H(t)\right] G_{R}\left(r, r^{\prime} ; t, t^{\prime}\right)=$ \qquad $-$
(a) $\delta(\mathbf{r}-\mathbf{r})$
(b) $\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)$
(c) $\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)$
(d) $\delta\left(t-t^{\prime}\right)$
(7) The radial momentum operator is given by \qquad .
(a) $\frac{(r . p-i \hbar)}{r}$
(b) r.p-in
(c) rep
(d) rep $+\frac{i \hbar}{r}$
(8) Which of the following transition is electric dipole allowed?
(a) $1 s \rightarrow 2 s$
(b) $2 p \rightarrow 3 d$
(c) $3 s \rightarrow 4 f$
(d) $3 s \rightarrow 5 d$
Q. 2 Answer any seven questions.
(1) What are spinors? Write their one r roperty.
(2) If two operators \mathbf{A} and \mathbf{B} commutwith spin matrix σ, then prove that $(\boldsymbol{\sigma} . \mathbf{A})(\boldsymbol{\sigma} . \mathbf{B})=\mathbf{A} . \mathbf{B}+i \sigma(\mathbf{A x B})$.
(3) Prove that $\mathrm{c} \alpha$ can be interpreted as the velocity operator. Here, α stands for Dirac matrix and c is the speed of light in vacuum.
(4) Using time dependent Schrödinger equation, deduce the integral form for propagator.
(5) What is meant by 'dipole approximation'? When is it a good approximation?
(6) Write the difference between classical and quantum Liouville equation.
P) Prove that $|\cdot \vec{J}|^{2}=J_{-} J_{+}+\hbar j_{z}+j_{z}^{2}$.
(8) What are Clebsch-Gordan coeffigents? Write their one importance.
(9) Obtain the value of $\left[j_{z}, J_{+}\right]$.
Q. 3 (a) For the ladder operator J_{+}, bain the expression for normalization constant
$c_{\mathrm{j}, \mathrm{m}}^{+}$. Obtain matrix represerilation for operators \boldsymbol{J}^{2} and j_{z} in the $|\lambda, m\rangle$ basis.
(b) Assuming $\left[S^{2}, s_{z}\right]=0$, expand any spin state $|\chi\rangle$ in terms of complete ortho- (6) -normal eigenstates $\left.\mid s, m_{s}\right)$ 龍s a special case, write spin wave functions for $s=1 / 2$. Write total wave furiction for it, and interpret each term in it.

OR

(b) Derive an expression for nol-relativistic Hamiltonian including spin.

Explain each term of it, and write an expression for corresponding energy eigenvalues. 3
Q. 4 (a) Write detailed note on Dentlty Matrix and its usefulness.
(b) What is propagator? Obtainits differential form. Derive an expression for transition amplitude $\left(c_{\mathrm{fi}}\right)$ within the sudden approximation.

OR
(b) "Electromagnetic waves behave as Harmonic oscillator" - Prove this state--ment with necessary equatisns. Discuss its quantization.
Q. 5 (a) Write down the Dirac equation for a single particle of mass m and derive the properties of the Dirac matrices.
(b) For free Dirac particle, obtain the positive and negative energy solutions. Explain these solutions.
(b) Starting with a suitable Lagpngian density for Klein-Gordon field, express the Hamiltonian in terms of the number operators corresponding to positive and negative energies.

$$
\frac{8}{4}
$$

Q. 6 (a) Write detailed note on Schrödinger picture for time evolution of quantum mechanical system. Give diference between Schrödinger picture and Heisenberg picture.
(b) Write note on addition of antular momenta. Discuss the phase convention while determining the CG ceefficients.

OR
(b) Derive an expression for probability density in the case of a Dirac particle and show that it has the same form as in the case of a non-relativistic expression resulting into a positive definite value.

