SARDAR PATEL UNIVERSITY

M. Sc. Physics IInd – Semester Examination

Thursday, Date: 27-10-2016 Time: 10:00 a.m. to 1:00 p.m.

Course No: PS02CPHY03

Subject: Electrodynamics and Plasma Physics

Note:	Symbo	ls have their usual me	aning.			Total Marks: 70	
Q.1	Select	the best possible answ	er from the choice	es given b	elow each questions.	(8)	
	(1)	Maxwell corrected A (a) Ampere's law	amperes law in o	rder to satis	sfy		
		(b) Faraday's Law					
		(c) The gauge condi-					
		(d) Continuity equat					
	(2)	The electric field cost by $E = 30 \cos(10^8 t)$	mponent of an elt $(\beta + \beta x) e_y$ V/m.	ectromagne Find the tin	etic wave propagating ne it takes to travel a	in free space is given distance of half the	
		wave length.	·				
		(a) 10^8 s		(b) 3x	10^{10} s		
		(c) 31.42 ns		(d) 3.	33 µs		
	(3)	Metals are opaque n	nainly due to		•		
	(4)	(a) Complete propa		eve through	n the medium		
		(b) Propagation de	lay of the e m wa	ve through	the medium		
	in the	(c) EM waves pro	pagate only thro	igh the surf	face of metals.	•	
	7	(d) Non- propagati	on of e m waves	in the cond	lucting medium		
	(4)	Wave guides can be					
1.		(a) transmitter	(b)	resonator			
		(c) low pass filter		high pass		<u> </u>	
*	(5)	The dominant mode	of EM transmis	sion throug	th a rectangular wave	guide is	
		(a) TE ₁₁	(b)	TM_{11}			
		(c) TM_{10}		TE_{10}			
	(6) What would be the length of a half wave dipole antenna operating in air at 50 MHz?						
		(a) 3 m		6 m			
	•	(c) 50 m		25 m			
	(7) It is the radiation emitted by the medium when a charge particle passes through the medium						
		relativistically.				•	
	-	(a) Gamma radiation	on (b)	Bremsstra	ahlung radiation		
		(c) Cerenkov radia		Synchrota	ron radiation		
	(8)	Lawson criterion is					
		(a) Fission reactor	• ,	,	Plasma oscillation		
	•	(c) Fusion reactor	s (d)	Landau da	mping		

Q.2	Answer any seven questions. All questions carry 2 marks each	7x2=14)			
	 Derive an expression for the relaxation time for free charges in a conductor. Define Poynting vector and give its physical interpretation. Find the skin depth of an electromagnetic wave of frequency 1.6 MHz in a conducting with conductivity σ = 38 MS/m. Assume μ_m = μ₀]. Define retarded time and find the gradient of retarded time. Define cutoff frequency and dominant mode in the case of a rectangular wave guide. What are TE,TM and TEM waves? Draw the radiation pattern of a radiating dipole antenna. What is Lawson criterion? Explain. Derive the Boltzmann equation corresponds to plasma and state at what condition it Vlasov equation. 				
Q.3(a) (b)	Derive an expression for Maxwell's stress tensor. Discuss the reflection and transmission from the interface of two dielectric media delectromagnetic wave at normal incidents.	(6) of a plane (6)			
(b)	OR Discuss reflection and transmission of parallel polarized plane electromagnetic wave at obliquincidence. Obtain expressions for reflection and transmission coefficients. (6)				
	Derive the relevant equations for the propagation of a TE mode in a rectangular wave guidexpression for its cut off frequency. A TM mode operating at 3GHz is propagated in an air filled wave guide. If $E_s = \sin(\frac{2\pi x}{a})\sin(\frac{\pi y}{b})\cos(\omega t - 10z) \text{ V/m}$	de. Obtain (6)			
	Find the cut off frequency for its dominant mode and components of the E and H field streng OR	gths. (6)			
(b)	Derive an expression for the radiation resistance of a Hertzian dipole antenna.	(6)			
Q.5(a)	What are synchrotron, Bremsstrahlung and Cerenkov radiations? How are they produced? their radiation patterns.	Compare (6)			
(b)	Using kinetic theory of plasma derive dispersion relation for plasma oscillation and Expla damping?	in Landau (6)			
(b)	OR Derive Larmor formula in the case of radiation due to a moving point charge.	(6)			
Q.6(a)	Discuss the formation of sheaths in plasma. Derive the sheath equation. Write a short note on the Ponderomotive force.	(6) (6)			
(b)	OR Write short note on Bohm Sheath criterion.	(6)			