50

No. of printed pages:02

Sardar patel University Vallabh Vidyanagar M Sc. II Sem. Examination

Subject: PS02CPHY23 Electrodynamics

Day & Date: Friday, 13th April 2018

Time: 2:00 to 5:00pm

Note: Symbols have their usual meaning

Max. Marks 70

I Choose the best possible answer from the choices given below each questions (8x1) (8)

- 1. According to Faraday's law, $-\frac{\partial}{\partial t} \oint B \cdot ds$ is equal to
 - (a) $\oint \nabla \times A d^3r$

(b) **∮** *E*. *dl*

(c) ∮ A. ds

- (d) $\oint E \cdot ds$
- 2. Find the direction of propagation of the electromagnetic wave whose electric field component is given by $\vec{E} = 20 \sin(10^8 t kz)\hat{y}$ V/m.
 - (a) along x direction
- (b) along x-y plane
- (c) along y-z plane
- (d) along z direction
- 3. The magnetic polarization (magnetization), M results in a bound current J_b given by
 - (a) $J_b = \nabla M$
- (b) $J_b = \nabla XM$
- (c) $I_b = 4\pi M$
- (d) $J_b = -\nabla M$
- 4. In the case of an electromagnetic wave propagating through vacuum, its **E** and **B** components satisfy the relation given by
 - (a) E and B fields are in phase
- (b) E lags behind the B field
- (c) B lagsbehind E field
- (d) E and B fields lags behind by 90°.
- 5. A wave guide generally act as
 - (a) an attenuator

(b) low pass filter

(c) resonator

- (d) high pass filter
- 6. In the radiation zone, the electric field component is related to the magnetic field component as
 - (a) $E = c\mathbf{B} \times \hat{\mathbf{r}}$

(b) $E = cB.\hat{r}$

(c) $E = \frac{c}{B} \hat{r}$

- (d) $E = c\hat{r} \times (B \times \hat{r})$
- 7. The condition $\nabla \cdot A = 0$ is known as
 - (a) Lorentz gauge condition
- (b) radiation gauge condition
- (c) Coulomb gauge condition
- (d) Axial gauge condition
- 8. The peak of the power density in the case of synchrotron radiation is proportional to relativistic factor γ as
 - (a) γ^6

(b) γ^4

(c) γ⁸

(d) γ^2

- 1. What are the boundary conditions satisfied by the E and B fields at the interface of two dielectric media.
- 2. Explain how Maxwell corrected the Ampere's law.
- 3. Define cut off frequency of a wave guide and give an expression for the cutoff wavelength of the dominant TE mode of propagation in a rectangular wave guide.
- 4. Explain the three zones surrounding an extended time varying source of electromagnetic radiation.
- 5. What is Cerenkov radiation? How is it different from synchrotron radiation?
- 6. Define retarded time, t_r and get an expression for retarded potentials.
- 7. Draw the angular distribution of the radiated power corresponds to Bremstrahlung radiation.
- 8. Show that $(v, \nabla)r = v$ where v and r represent the retarded velocity of the moving charge and relative position of the charge with reference to the detector.
- 9. Explain why a hollow wave guide cannot propagate electromagnetic waves.
- III A. Define Poynting vector. How is it related to the intensity of the electromagnetic wave? Then derive expression for the radiation pressure. (6)
 - B. Discuss the Reflection and Transmission of electromagnetic plane waves at normal incidence and show that R+T=1. (6)

OR

- B. Obtain the dispersion relation for the electromagnetic plane wave propagating through a conducting medium. Deduce the real and imaginary parts of the propagation vector and interpret them separately with reference to the case of a very poor conducting and a good conducting medium.

 (6)
- IV A. Define the retarded potentials and derive the generalized Coulomb's law. (6)
 - B. Explain Lie'nard-Wiechert potentials. Derive the power radiated by a non-relativistically moving point charge. Draw its power distribution pattern. (6)

OR

- B. Find the potentials of a Hertzian dipole antenna. Derive its angular distribution of power radiated by this antenna. (6)
- V A. Study the TE waves in a rectangular wave guide and obtain expression for the cutoff frequency. Compute the lowest cutoff frequency for the TE modes operating at a frequency of 30GHz for the wave guide whose cross section is 1.0 cm x 2.0 cm. (6)
 - B. For an oscillating magnetic dipole derive the electromagnetic potentials and the corresponding electric and magnetic fields. Then obtain an expression for the angular power distribution.

OR

- B. An air filled resonant cavity having dimensions a= 5 cm, b= 4 cm, and c= 10 cm is made of a conductor whose conductivity is 6x 10⁷ mhos/m. Determine its first three lowest order modes.
- VI A. Derive the Abraham- Lorentz formula and explain the physical basis of radiation reaction.
 - B. Derive the Larmor formula in the case of power radiated by a moving point charge. (6)
 - B. Derive the total power radiated by a relativistic point charge moving in a circular orbit. (6)

