| Īn | No. of printed pages SARDAR PATEL UNIVERSITY M.Sc. Physics II nd Semester Examination Wednesday, Date: 11/04/2018, Time: 02:00 p.m. to 05:00 p.m. Subject: PHYSICS, Paper:PS02CPHY02 Title: Elements of Experimental Physics | : 02 | |-----|---|------| | | gures to the right indicate marks. Total Marks: 70 | | | Q. | Write answer of all questions by showing your choice against the question number. (i) The space around us contains molecules per every c.c. (a) 2.5 X 10 ¹⁸ (b) 2.5 X 10 ¹⁹ (c) 2.5 X 10 ²⁰ (d) 2.5 X 10 ²¹ | [8] | | - | (ii) The unknown pressure can be calculated using Pirani gauge byequation. | | | | (a) $P_{x} = \frac{I^{2}R(I + \alpha\Delta T) + b\Delta T - \sigma(T^{4} - T_{a}^{4})}{c\Delta T}$ (b) $P_{x} = \frac{I^{2}R(I + \alpha\Delta T) - b\Delta T + \sigma(T^{4} - T_{a}^{4})}{c\Delta T}$ (c) $P_{x} = \frac{I^{2}R(I + \alpha\Delta T) - b\Delta T - \sigma(T^{4} - T_{a}^{4})}{c\Delta T}$ (d) $P_{x} = \frac{I^{2}R(I + \alpha\Delta T) + b\Delta T + \sigma(T^{4} - T_{a}^{4})}{c\Delta T}$ | | | | (iii) If the fast moving electrons rapidly decelerate, thenare produced. (a) Alpha rays (b) Beta rays (c) Gamma rays (d) X-rays | | | | (iv) factor is independent of size and shape of the unit cell. (a) Temperature (b) Multiplicity (c) structure (d) Lorentz-polarization | | | | (v) The energy of the emitted X-rays depends upon the atomic number of the atom and their intensity depends upon the (a) sample (b) mass number (c) concentration of atoms (d) concentration of molecules | | | | (vi) equation represents Bragg's law for X-ray diffraction.
(a) $n\lambda = 2d\sin\theta$ (b) $n\lambda = -2d\sin\theta$ (c) $n\lambda = 1/2d\sin\theta$ (d) $n\lambda = -1/2d\sin\theta$ | | | | (vii) In a histogram, the minimum class interval is required (a) 2 (b) 3 (c) 5 (d) 6 | | | • | (viii) The number of observations are falling within each class is called: (a) class mark (b) class frequency (c) frequency of polygon (d) ogive | | | Q.2 | Attempt any Seven of the followings: (i) Mention advantages of molecular drag pump. (ii) Why activated charcoal is used as sorbent in sorption pump? (iii) Distinguish between elastic and coherent scattering. | 14] | | | CP.7.00) | | | | (iv) Explain characteristics of X-rays in brief. (v) Describe basic principle of phosphorescence spectroscopy. (vi) Discuss in brief differential scanning calorimetry. (vii) Describe working of Cloud chamber used for detection of particles. (viii) Explain in brief Cherenkov detector. (ix) Distinguish between discrete quantities and continuous distributed quantities. | | |----------|---|-----| | Q.3(a) | With the help of necessary diagram explain principle, construction and working of roots pump to crate lower pressure inside the chamber. | [6] | | Q.3(b) | What is diffusion? Describe in detail the working of diffusion pump using necessary diagram. Also mention the advantages and disadvantages of mercury over other oil used in this pump. OR | [6] | | Q.3(b) | Draw the suitable diagram of Magnetron gauge and describe its construction and working in detail. | [6] | | , Q.4(a) | With the help of necessary schematic diagram explain principle, construction and working of transmission electron microscope. | [6] | | Q.4(b) | What are X-rays? Explain X-ray sources and X-ray absorbers in detail. OR | [6] | | Q.4(b) | What is neutron scattering? Describe in detail slow neutron scattering in solid. | [6] | | Q.5(a) | Differentiate between thermo gravimetric analysis and differential thermal analysis. Discuss thermo gravimetric analysis using suitable diagram. | [6] | | Q.5(b) | What is photoluminescence? Describe the photoluminescence intensity related to the concentration. | [6] | | 0.50 | OR | | | Q.5(b) | Write a short note on X-ray fluorescence spectroscopy. | [6] | | Q.6(a) | Draw schematic diagram of scintillation spectrometer and describe its working in detail. | [6] | | Q.6(b) | Ten samples of steel wires are tested to measure breaking strength of this wire in tones are: 4.2, 4.3, 4.4, 4.5, 4.5, 4.5, 4.6, 4.6, 4.7 & 4.9. Calculate: (a) Mean value of breaking strength, (b) Mean deviation, (c)Standard deviation of the data, (d) Best estimated precision, (e) Internal standard error and (f) Breaking strength of wire. | [6] | | Q.6(b) | OR What is Gaussian distribution? Detarmine | | | £.5(~) | What is Gaussian distribution? Determine mean value and the standard deviation for Gaussian distribution. | [6] | ## XXXXXXXX