SARDAR PATEL UNIVERSITY

M. Sc. (Physics) 4th Semester Examination Thursday, 25th October, 2018 Time: 02:00 pm to 05:00 pm

Subject: PS04CPHY02 [Theoretical Solid State Physics]

Total Marks: 70

Note: (1) Figures to the right indicate	o montra
Note: () Bignites to the right indicat	e marks.
THUIC. IT I I EULOS TO THO TIGHT INCHOR.	

(2) Symbols have their traditional meaning.

Attempt all of the following Multiple choice type questions. [01 mark each]

- In the free electron model the mass of the electron (1)
 - (a)

- (c) $\hbar \left(\frac{d^2E}{dk^2}\right)^{-1}$
- is much greater than me (b)

- (d) is constant
- A plasma oscillation in a metal is a _____ (2)

excitation of the conduction electrons. collective longitudinal

collective transverse (a)

(c) (d) longitudinal

- transverse (b)
- Near the forbidden band the curvature of E versus k becomes (3)
 - positive (a)

(c) zero

(b) negative

- (d) constant
- A Bloch function $|\psi_k\rangle$ can be represented in terms of plane waves as (4)
 - $\sum_{a} a_{g} \left| \vec{k} \vec{g} \right\rangle$

(c) $\sum_{g} a_{g} |\vec{k} - \vec{g}| \langle \vec{k} - \vec{g}|$ (d) $\exp(ikNa)$

 $\sum_{g} a_{g} \left\langle \left| \vec{k} - \vec{g} \right\rangle \right|$

- The classical Debyr-Huckel screening length is proportional to (5)
 - $(N_0 e^2/T)^{-1/2}$ (a)

(c) $(N_0 e^2/T)^{1/2}$

(b) $(N_0e^2/T)^2$

- (d) $(N_0 e^2/T)$
- Change in 1/H through a single period of oscillation $\Delta(1/H)$ is proportional to (6)
 - (a) $1/A_e$

(c) A_e

 $1/(A_e*hc)$ (b)

- (d) hc/A_e
- The critical temperature of superconductor change with (7)
 - temperature (a)

(c) isotopic mass

electric field (b)

- (d) size
- For superconductor, energy gap which is centered about Fermi surface (8)
 - is undefined (a)

- (c) remains unchanged with temperature
- decreases with increase of temperature (b)
- (d) increases with increase of temperature

e.				
•	Q:2		Answer any 7 of the following 9 questions briefly. [02 marks each]	14]
		1	Explain origin of energy gap.	
		2 3	Draw a neat diagram and explain Umklapp process. Explain how conductors, semiconductors and insulators are classified.	
		4	Give a schematic diagram showing the first and second Brillouin zones for	
		_	a square lattice.	
		5 6	Show with the help of a diagram how an OPW is obtained. Define Fermi gas and Block function.	
		7	Explain ultrasonic attenuation.	
		8	Describe the origin of energy gap.	
	-	9	Explain isotope effect.	
	Q:3	(a)	Write notes on (i) plasma optics (ii) origin of energy gap.	[6]
		(b)		[6]
			$p\frac{\sin(\alpha \cdot \mathbf{a})}{(\alpha \cdot \mathbf{a})} + \cos(\alpha \cdot \mathbf{a}) = \cos(k \cdot \mathbf{a}).$	
			OR	
		(b)	Write notes on (i) electrostatic screening (ii) screened Coulomb potential.	[6]
	Q:4	(a)	Explain the plane wave method of energy band calculation and list its merits and demerits.	[6]
		(b)	Explain various zone schemes and give a detailed classification of materials based on band theory of solids.	[6]
			OŘ.	
		(b)	Write a note on tight binding method.	[6]
	Q:5	(a)	Write the names of experimental methods for mapping the Fermi surface. Write note on dHvA effect.	[6]
		(b)	(i) Write note on anomalous skin effect.	[6]
			(ii) Deduce the relation $\Delta A = \frac{2\pi eH}{\hbar c}$.	•
			OR	
		(b)		[6]
			its limiting values for $q \to 0$ and $q \to \infty$.	
	Q:6	(a)	Derive the expression for coherence length as well as London's penetration depth.	[6]
		(b)	Write notes on (i) Meissner effect (ii) Fullerenes.	[6]
			OR	
		(b)	Explain the formation of Cooper pair and list out salient features of BCS theory of superconductivity.	[6]
			$-\chi$	
			2	