SARDAR PATEL UNIVERSITY

M Sc (Physics)- IV Semester Examination PS04CPHY01 Nuclear and Particle Physics Day and Date: Tuesday, 23 October 2018

Time:	2:00 to 5:00pm	Day and Date: T	uesday, 23 Octo	ber 2018 Ma	x marks: 70	
I Cl	noose the best	possible answer fr	om the choices g	iven below the o	uestions (8x1=8)	
1.	Gluons are re	lated to				
	(a) QFD	(b) QCD	(c) QED	(d) QFT		
2.	The pair of m	uclei ${}_{1}^{3}H$, ${}_{2}^{3}He$ are	called			
	(a) Isomers	(b) Isotopes	(c) Isobars	(d) Mirror nu	clei	
3.	The quadrupo	ole moment for a cl	osed shell nuclei	will be		
	(a) Positive	(b) Negative	(c) Zero	(d) ±1		
4.	The life time attributed to	of a free proton is	as long as the life	time of the Univ	verse. It is	
	(a) Baryon n (c) Parity con	umber conservation nservation		Energy- momento Lepton number co		
5.	According to the single particle shell model, the spin parity of $^{17}_{8}O$ is					
	(a) 2 ⁺	(b) 1/2 ⁺	(c) :	5/2+	(d) 3/2	
6.	The parity of	f a magnetic multip	ole transition is			
	(a) $(-1)^{l+1}$	(b) (-1) ^t	(c) $(-1)^{2l}$	(d) -	1	
7	Spontaneous	s symmetry breakin	g in the standard	model is manifes	sted through	
	(a) CPT theorem(c) CP Violation		(b) Existence of Higg's field (d) E8 symmetry		ld	
8,	Quarks com	position of the $\Lambda_{ m C}$	baryon is			
	(a) uds (c) dsc	,	b) udc d) usc			
II 1.	Attempt any s Explain the	even of the follow basic nature of nuc	ing short answer lear exchange for	questions.	(7x2=14)	

Explain the basic nature of nuclear exchange forces.
 What does the experimental non zero quadrupole moment of deuteron suggest?
 Explain briefly

3. 4.	Discuss the liquid drop model of nuclei. Explain its successes and failures. Discuss Geiger-Nuttal law with reference to the alpha decay					
5.	Explain CPT theorem.					
6.	Explain the selection rules for beta transitions?					
7.	Explain Lawson criterion.					
8.	Explain the basic idea of the grand unification theory?					
9.	With the help of extended Gell-Mann - Nishijima formula find the electric charge					
	of a charm quark in units of $ e $.					
III A	11.0 11 1 1- file hinding analysis					
	bound state. (6)					
В	With the help of harmonic oscillator potential and spin-orbit potential explain the					
1.5	shell model and draw the nuclear shell structure for protons and neutrons. Using					
	it determine the ground state spin – parity of ${}^{13}_{6}C$. (6)					
	OR					
В.	Discuss the basic features of the nuclear collective model. Explain the rotational and vibrational nuclear energy bands.					
	and vibrational indicat chergy carrest					
IV A.	Discuss the Comot b theory of arbitrary and a					
В.	Describe the Fermi theory of beta decay. (6) OR					
ъ	Explain Gamma decay and explain the multipole transition probabilities. Discuss					
יכו.	the respective selection rules. (6)					
V A	Discuss interaction of heavy charge particle with matter. Get an expression for the					
	energy loss of heavy charge particle in matter. (6)					
В.	Discuss the nuclear reaction kinematics and derive an expression for the Q value					
	of a nuclear reaction. (6)					
OR						
В.	Discuss the medical applications of nuclear physics. (6)					
VIA.	Discuss how the elementary particles are classified. Discuss various conservation					
	laws abide by the elementary particles. (6)					
В.	Give a summary of the standard model of particle physics. (6)					
70	OR					
В.	Explain the gauge principle and show how it is implemented in QED as an example of L(1) gauge theory.					
	example of U(1) gauge theory. (6)					
	**** X -					
	$\overline{2}$					