SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar

M. Sc. (Physics) 4th Semester Examination Tuesday, 25th October, 2016

Time: 02:00 pm to 05:00 pm

Subject: PS04CPHY02 [Theoretical Solid State Physics]

Total Marks: 70

Note: (′1 ì	Figures to	۱ the	rioht	indicate	marks
11000		・メエニはいひひゃく	/ \		municato	TITIOTIES.

(2) Symbols have their traditional meaning.

Q:1 Attempt all of the following Multiple choice type questions. [01 mark each] [08]

- (1) Positive effective mass corresponds to
 - (a) $\frac{d^2E}{dk^2}$ positive

(c) $\frac{d^2E}{dk^2}$ negative

(b) $\frac{d^2E}{dk^2}$ infinity

- (d) $\frac{d^2E}{dk^2}$ zero
- (2) In the Kronig-Penny model of a linear lattice, if the strength of the potential barrier P increases, the width of the allowed bands
 - (a) increases

(c) remains constant

(b) decreases

- (d) none of these
- (3) For a monovalent metal, the area of first Brillouin zone corresponding to a square lattice of periodicity a is given by
 - (a) $2\pi/a^2$

(c) $4\pi^2/a$

(b) $\left(\frac{2\pi}{a}\right)$

- (d) $4\pi^2 / a^2$
- (4) For wave vector k=0, all the states inside the first Brillouin zone are
 - (a) half filled

(c) full

(b) free

- (d) empty
- (5) Difference in area of classical orbits at adjacent allowed energies is
 - (a) $\left(2\pi e H/\hbar c\right)$

(c) $\left(2\pi eH/\hbar c\right)$

(b) $\left(2\pi H/\hbar c\right)$

- (d) $\left(2\pi cH/\hbar H\right)$
- (6) Explanation to theory of dHvA effect for Bloch electrons was pointed out by
 - (a) Landau

(c) Bloch

(b) Onsager

(d) Shoenberg

(7)		Number of charge carriers thermally exband is proportional to	cited	from valence band to conduc	etion					
	(a)	$\exp(-\text{Ev/k}_B\text{T})$	(c)	exp(-Eg/k _B T)						
	(b)	$\exp(Eg/k_BT)$		$\exp(-\text{Ec/k}_BT)$						
(8)	(a)	The critical temperature Tc of supercondu $M^{-\alpha}T_{c}$ = constant		s varies with the isotopic mass a $\frac{M''}{T_c} = \text{constant}$	S					
	(b)	$MT_c = \text{constant}$		$M^{\alpha}T_{c} = \text{constant}$						
Q:2		Answer any 7 of the following 9 questions briefly. [02 marks each] 14								
	1	State Bloch's theorem. How is this theorem useful?								
	2	Give classification of solids based on energy gaps.								
	3	Draw diagrams properly representing the periodic, extended and reduced zone scheme.								
	4	Draw a figure to show the first, second and third Brillouin zone for a square lattice in two dimension.								
	5	Explain very briefly the de Hass-van Alphen effect.								
	6	What is anomalous skin effect?		•						
	7	Briefly explain about microwave and superconductors.	infr	ared properties in case of						
	8	Explain fullerenes.								
	9	Differentiate between Type-I and Type-II	supe	rconductors.						
Q:3	(a)	Explain electrostatic screening and obtain	n the	relation $\varepsilon(0,q) = 1 + \frac{q_s^2}{q^2}$.	[6]					
	(b)	Write notes on (i) Screened Coulomb oscillations.	Potei	ntial (ii) Longitudinal plasma	[6]					

(b) Formulate the Kronig-Penny

 $P\frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka).$

OR

model

and

obtain the relation [6]

Q:4	(a)	Write a note on Empty lattice method	[6]				
	(b)	What are the drawbacks of plane wave method? Describe the OPW method of band structure calculation.	[6]				
	(b)	OR Discuss the APW method to determine the band structure.	[6]				
Q:5	(a)	Write notes on (i) Fridel oscillations (ii) Free electron Landau levels.					
	(b)	List various methods of Fermi surface determination and describe in detail the cyclotron resonance.	[6]				
	(b)	OR Write notes on (i) Electron ion potential and screening (ii) Lindhard dielectric function.	[6]				
Q:6	(a)	Describe the flux quantization in a superconducting ring.	[6]				
	(b)	Explain the formation of cooper pair and give salient features of BCS theory of superconductivity.	[6]				
	(b)	OR What is dc and ac Josephson effect? Explain the d.c. Josephson effect in detail.	[6]				

.