	~	
1	1	_ !
- 1	55/A	<u>.</u>
1	シン/バ	
L	,	

SEAT No.____

No. of Printed Papers: 02

SARDAR PATEL UNIVERSITY
M.Sc. (Physics) 4st Semester Examination

Wednesday, 20 th March, 2019 Subject: PS04CPHY02 (Theoretical Solid State Physics)			
Time	Total Marks: 70		
Q-1 I	Eight multiple choice questions. (MCQ)	[01 mark each]	
1.	The Fermi wave vector k_F is given by (a) $(3\pi^2 \text{V/N})^{1/3}$ (b) $(3\pi^2 \text{V/N})^{2/3}$ (c) $(3\pi^2 \text{N/V})^{2/3}$ (d) $(3\pi^2 \text{N/V})^{1/3}$		
2.	A plasma oscillation in a metal is a excitation of the conduction electrons. (a) collective transverse (b) collective longitudinal (c) transverse (d) longitudinal		
3.	Near the forbidden band the curvature of E versus k becomes (a) negative (b) constant (c) zero (d) positive		
4.	$2\pi/a$ defines the boundary between which Brillouin Zones (a) Origin and first (b) second and third (c) first and second (d) Non	ue	
5.	The classical Debye-Huckel screening length is proportional to (a) $(N_0e^2/T)^{-1/2}$ (b) $(N_0e^2/T)^2$ (c) $(N_0e^2/T)^{1/2}$ (d) (N_0e^2/T)		
6.	In aluminum the core states are associated with (a) d shells (b) 1s ² 2s ² 2p ⁶ (c) 3s ² 3p (d) 1s ² 2s ² 2p ⁶ 3s ¹		
7.	Angular frequency of AC Josephson effect is (a) $2\pi qV_0/h$ (b) $2\pi eV_0/h$ (c) $4\pi eV_0/h$ (d) None of these		
8.	The BCS energy gap is given as (a) K_bT_C (b) $3.52K_bT_C$ (c) $1/K_bT_C$ (d) $4.1~K_bT_C$		
Q -2 A	attempt any 7 of the following 9 question briefly.	[02 marks each]	
1. 2. 3. 4.	Explain origin of energy gap. State Bloch's theorem. Sketch Bloch's function. How is a reciprocal lattice obtained from direct lattice? Show with the help of a diagram how an OPW is obtained.		
	What are Friedel oscillations?	(P.T.O.)	

- 6. What is anomalous skin effect?
- 7. Define coherence length and penetration depth of superconductor.
- 8. Explain isotope effect.
- 9. Describe soft and hard superconductor with appropriate diagram.

Q-3

- (a) Write notes on (i) screened Coulomb potential (ii) Umklapp process [06]
- (b) Derive an expression for the band effective mass of an electron and interpret the concept of hole. [06]

OR

(b) Formulate the Kronig-Penny model and establish the relation, [06]

 $p \frac{\sin(\alpha. a)}{(\alpha. a)} + \cos(\alpha. a) = \cos(k. a)$

Q-4

- (a) Explain (i) formation of energy bands (ii) Reduced zone scheme. [06]
- (b) Describe the plane wave method of band structure calculation. [06]

OR

(b) Describe the tight binding method of band structure calculation. [06]

Q-5

- (a) What is Fermi surface? Write a note on dHvA effect. [06]
- (b) Name various methods for the experimental mapping of Fermi surface and discuss any one method in detail. [06]

OR

(b) Obtain an expression for the Lindhard screening function. Also determine its limiting values for $q \rightarrow 0$ and $q \rightarrow \infty$ [06]

0-6

- (a) Describe Bardeen-Cooper-Schrieffer theory of superconductivity in detail. [06]
- (b) Obtain the change in Gibbs free energy, entropy and specific heat at superconducting transition. [06]

OR

(b) Discuss the two fluid model of superconductor and derive London's equation and London's penetration depth. [06]
