57/A-10 SEAT NO.___

No. of printed pages: 02

SARDAR PATEL UNIVERSITY

M.Sc. (PHYSICS) (IVth – Semester) Examination
Day & Date: Monday & 18/03/2019

Time: 10:00 AM to 01:00 PM

ICLEAR AND PARTICLE PHYSICS

	Title:	NUCLEAR AND PAI Course Code: PS04	ACPHY01		
Instru	ction: Figures to the ri			Tatal Manks 70	
0.1	Write answer of all	Lauestions by show	ing your choice agains	Total Marks: 70 st the question [8]	
Q.1	num han				
(1)	(a) orbital motion of neutron(c) orbital motion of proton		e to the magnetic moment of deuteron. (b) intrinsic spin of individual nucleon (d) all of them		
(2)	The binding energy p	er nucleon in the case	of 56 Fe nucleus is	MeV/nucleon.	
	(a) 3.8	(b) 8.7	(c)10.3	(d) 931.6	
(3)	arises due to the pher	omenon known as	ionization at its end, this		
(4)	A free neutron outsid (a) β ⁺	le a nucleus undergoes (b) β¯	(c) Electron-capture	decay. (d) none of them	
(5)	The relation between (a) Geiger-Nuttal law (c) Bohr-Mottelson r	V	e range and life time of α - emitter nuclei is known as (b) Gamow-Teller law tion (d) Katz-Penfold relation		
(6)	The leptonic number	for positron is	·		
	(a) - 1	(b) 0	(c) 1	(d) ½	
(7)	The exchange particle (a) coloured gluons	les responsible for the (b) photons	colour interactions are (c) mesons	(d) quarks	
(8)	(\ 1	sponsible for the stron	ng interaction are known (b) gravitons (d) mesons	as:	
Q.2 (1)	(c) neutrinos (d) mesons Attempt any Seven of the followings:			[14]	
(2)	Explain experimental properties of the deuteron.				
(3)	Discuss Q-values in orbital electron capture process.				
(4)	Discuss in short nuclear fission mechanism.				
(5)	Explain the selection rules in the case of β - decay transitions.				
(6)	What is Fermi-Kurie plot? What type of information does it provide in case of β - d				
		(c)		(P.T.O.)	

(7)	Explain PPI cycle of proton burning inside the Sun.					
(8)	What is compound nucleus? Write a nuclear reaction where in compound nucleus is formed.					
(9)	Extend the Gellmann-Nishijima formula to incorporate charm quark flavor and using it obtain the charge of the charm quark.					
Q.3(a)	Discuss the successes and failures of the single particle shell model. Discuss how the collective model explains the shortcomings of the single particle shell model.					
Q.3(b)	Using necessary equation derive magnetic moment of deuteron.	[6]				
OR						
Q.3(b)	In the collective nuclear model discuss vibration of spherical nuclei.	[6]				
Q.4(a)	Explain range –energy relationship in α - particles and what is Geiger-Nuttal law?	[6]				
Q.4(b)	Discuss the continuous spectrum and neutrino hypothesis in β - decay.	[6]				
OR						
Q.4(b)	Discuss in detail the electromagnetic transitions in nuclei.	[6]				
Q.5(a)	Discuss in details the nucleo-synthesis in stars.	[6]				
Q.5(b)	Discuss the general features of a nuclear reactor. Explain how the nuclear reactors are classified.	[6]				
OR						
Q.5(b)	Discuss the main components of a nuclear reactor and discuss each of them in short.	[6]				
Q.6(a)	Based on the fundamental interaction forces classify the elementary particles.	[6]				
Q.6(b)	Discuss Gell-Mann's SU(3) Quark Model for hadrons. Explain its successes and failures. How is it improved?	[6]				
Q.6(b)	OR Describe the various nuclear techniques employed in the diagnostic and therapeutic applications of nuclear medicine.	[6]				
xxxxxxxxx						
\ \						