No. of Printed Pages : 2

	L	SARDAR PATEL UN Vallabh Vidyar M. Sc. (Physics) 4 th Semes Wednesday, 11 th Ap Time; 10:00 am to Subject: PS04CPHY02 [Theoretic	nagar ter Ex oril, 2 01:00	kamination 018) pm	Total Marks: 7	
Note	o (1) F	Figures to the right indicate marks.				
14010	, ,	Symbols have their traditional meaning.	:,	•		
Q:1	Atte	mpt all of the following Multiple choice	type	questions. [01 ma	irk each] [08	
(1)		The Fermi wave vector k_F is given by				
	(a)	$(3\pi^2V/N)^{1/3}$	(c)	$\left(3\pi^2N/V\right)^{2/3}$		
	(b) ·	$\left(3\pi^2V/N\right)^{2/3}$	(d)	$(3\pi^2N/V)^{1/3}$	·	
(2)	(a) (b)	A plasma oscillation in a metal is a collective transverse transverse	exc (c) (d)		uction electrons. dinal	
(3)		$2\pi/a$ defines the boundary between which	h Bril	louin zones		
	(a) (b)	origin and first second and third	(c) (d)			
(4)	A Bloch function $ \psi_k\rangle$ can be represented in terms of plane waves as					
	(a)	$\sum_{g} a_{g} \left \vec{k} - \vec{g} \right\rangle$		$\sum_{g} a_{g} \left \vec{k} - \vec{g} \right\rangle \left\langle \vec{k} - \right $		
	(b)	$\sum_{g}^{g} a_{g} \left\langle \left \vec{k} - \vec{g} \right\rangle \right $		exp(ikNa)	,	
(5)		The classical Debyr-Huckel screening le	ngth :	is proportional to		
	(a)	$\left(N_0 e^2/T\right)^{-1/2}$	(c)	$\left(N_0e^2/T\right)^{1/2}$		
	(b)	$\left(N_v e^2/T\right)^2$	(d)	$\left(N_{0}e^{2}/T\right)$		
(6)	,	In aluminium the core states are associate	ed wi	th		
	(a)	d shells $1s^2 2s^2 2p^6$	(c)	3s ² 3p ¹ 1s ² 2s ² 2p ⁶ 3s ¹		
	(D)	18 28 2p	(u)	15 28 2p 38		
(7)	· (-)	Superconductivity was discovered by		_in 1911 at Leiden Kammerlingh On		
	(a) (b)	London Landau	٠.,	Bednortz and Mu		
(8)	. ::	The BCS energy gap is given by	**;**!		•	
(*)	(a)	$1/k_BT_C$		$4.1k_BT_C$		
	(b)	k_BT_C	(d)	$3.5k_BT_C$		
					_	

SEAT No.___

Q:2		Answer any 7 of the following 9 questions briefly. [02 marks each]	[14]	
	1	Explain origin of energy gap.		
	2.			
	 3 Explain how conductors, semiconductors and insulators are classified. 4 Differentiate between extended, reduced and periodic zone schemes using 			
	4 Differentiate between extended, reduced and periodic zone schemes using suitable diagrams.			
	5	Show with the help of a diagram how a OPW is obtained.		
	6	What are Friedel oscillations?		
	7 8	Explain the anomalous skin effect. Describe soft and hard superconductor with appropriate diagram.		
	9	Explain isotope effect.		
			*	
Q:3	(a)	State and prove Bloch theorem.	[6]	
	(b) Formulate the Kronig-Penny model and establish the relation,		[6]	
		$p \frac{\sin(\alpha \cdot \mathbf{a})}{(\alpha \cdot \mathbf{a})} + \cos(\alpha \cdot \mathbf{a}) = \cos(k \cdot \mathbf{a}).$		
•		OR		
	(b)	Write notes on (i) electrostatic screening (ii) screened Coulomb potential.	[6]	
.				
Q:4	(a)	Describe the empty lattice method.	[6]	
	(b)	Explain the tight binding method of energy band calculation.	[6]	
•		OR		
	(b)	Describe the Plane wave method of band structure calculation	[6]	
Q:5	(a)	Write the names of experimental methods for map the Fermi surface. Write note on dHvA effect.	[6]	
	(b)	(i) Write note on magnetoacoustic effect.	[6]	
		(ii) Deduce the relation $\Delta A = \frac{2\pi e II}{hc}$.		
		OR		
	(b)	Obtain an expression for the Lindhard screening function. Also determine its limiting values for $q \to 0$ and $q \to \infty$.	[6]	
Q:6	(a)	Discuss the two fluid model of superconductor and derive London's equation and London's penetration depth.	[6]	
	(b)	Write notes on (i) Josephson effect (ii) Fullerenes.	[6]	
		OR		
	(b)	Discuss the thermodynamics of type-I superconductors near phase transition.	[6]	