SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar

M. Sc. (Physics) 4th Semester Examination Wednesday, 6th April, 2016 Time: 02:30 pm to 05:30 pm

Subject: PS04CPHY02 [Theoretical Solid State Physics]

Total Marks: 70

Note: (1) Figures to the right indicate marks.

(2) Symbols have their traditional meaning.

Q:1 Attempt all of the following Multiple choice type questions. [01 mark each] [08]

- (1) When one includes relaxation time for scattering, frequency dependent dielectric function is given by
 - (a) $\left(1 \frac{\omega_p^2}{\omega}\right) \frac{1}{\left(\omega + \frac{1}{2}\right)^2}$

(c) $\left(1 - \frac{\omega_p^2}{\omega^2}\right) \frac{1}{\left(\omega + \frac{i}{\tau}\right)}$

(b) $\left(\frac{\omega_p^2}{\omega}\right) \frac{1}{\left(\omega + \frac{i}{\tau}\right)}$

- (d) $\left(1 \frac{\omega_p}{\omega}\right) \frac{1}{\left(\omega + \frac{i}{\tau}\right)}$
- (2) Radius of the Fermi sphere in k-space is given by
 - (a) $(3\pi^2 n/a^3)^{1/2}$

(c) $\left(3\pi^2 n / a^2\right)^{1/2}$

(b) $\left(3\pi^2 n / a^2\right)^{1/3}$

- (d) $\left(3\pi^2 n / a^3\right)^{1/3}$
- (3) In OPW method the electron wave function outside a ion core is assumed to be a
 - (a) tightly bound

(c) orthogonalized plane wave

(b) plane wave

- (d) highly oscillating wave
- (4) Under the free electron approximation the E versus k curve is
 - (a) constant

(c) plane wave

(b) parbolic

- (d) highly oscillating
- (5) For a spherical Fermi surface for a free electron case, the velocity of an electron is
 - (a) $v = \hbar^2 k^2 / m_0$

(c) $v = (\hbar k/m_0)^{1/2}$

(b) $v = (\hbar k/m_0)^2$

- (d) $v = \hbar k/m_0$
- (6) The classical Debye-Huckel screening length is proportional to...
 - (a) $\left(\frac{N_0 e^2}{T}\right)^2$

(c) $\left(\frac{N_0 e^2}{T}\right)^1$

(b) $\left(\frac{N_0 e^2}{T}\right)^{1/2}$

(d) $\left(\frac{N_0 e^2}{T}\right)^{-1/2}$

7)	The transition temperature varies with average isotopic mass as		
	(a)	$T_c \propto M^{-1/2}$ (c) $T_c \propto M^{-1/3}$	
	(b)	$T_c \propto M^{-2}$ (d) $T_c \propto M^{1/2}$	
8)	(0)	The London penetration depth with temperature. decreases (c) increases	
	(a) (b)	remains constant (d) levels off	
Q:2		Answer any 7 of the following 9 questions briefly. [02 marks each]	14]
	<i>1 2</i>	What is Umklapp process? Draw graphs of effective mass, energy, first order and second order derivative of energy as a function of wave vector k.	
	3 4 5	Explain how Brillouin zones are drawn with the help of suitable diagrams. With the help of a suitable diagram show how solids are classified into conductors, semi-conductors and insulators. What is dHvA effect?	
	6 7 8 9	List the methods used to experimentally find the Fermi surface. Differentiate between type I and type II superconductors. Explain energy gap at the Fermi level in the superconducting state. What are Cooper pairs?	
Q:3	(a)	State and prove Bloch's theorem.	[6]
	(b)	Write a detailed note on screened Coulomb potential. OR	[6]
	(b)	Formulate the Kronig-Penney model and establish the relation $P\frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka) \ .$	[6]
Q:4	(a)	Explain the empty lattice method of band structure calculation. What are the drawbacks of this method?	[6]
	(b)	Explain the plane wave method of band structure calculation.	[6]
	(b)	OR Explain the tight binding method of energy band calculation.	[6]
Q:5	(a)	Write a note on effect of magnetic field on Fermi surface.	[6]
	(b)	the nth orbit is $r_n = \left[\frac{2\hbar}{m_o \omega_c} \left(n + \frac{1}{2} \right) \right]^{1/2}$	[6]
	(b)	OK	[6]

- Q:6 (a) Explain the Meissner effect and prove that superconductivity is [6] diamagnetism of a different kind.
 - (b) Discuss various thermodynamic properties of a superconductor. Prove that [6] normal to superconducting phase transition is a second order phase transition.

OR

[6]

(b) Write notes on (i) BCS ground state and (ii) Fullerenes.

X=X=X