

SARDAR PATEL UNIVERSITY

M. Sc. (Physics) 1st Semester Examination Monday, 22nd October, 2018 Time: 10:00 am to 01:00 pm

Subject: PS01CPHY01 [Mathematical Physics & Computer Programming]-Old Course

5,	a o j o o o	, 2 9 0 2 - 2 2 2 2 2		Total Marl	ks: 70
Note	: (1) F (2) S	Figures to the right indicate marks. Symbols have their traditional meaning.			
Q:1	Atte	empt all of the following Multiple choice	type	questions. [01 mark each]	[80]
(1)	(a) (b)	A tensor of rank n has compone 3n n ³	ents. (c) (d)	3 ⁿ⁻¹ 3 ⁿ	
(2)		The eigen values of matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ are			
	(a) (b)	1,2 0,2	(c) (d)	1,1 1,0	
(3)	(a) (b)	While mapping from z-plane to w-plane, translation Roto-inversion	(c)	corresponds to inversion rotation	
(4)		If $u = x^2 - y^2$, then corresponding analysis $z^3 + c$ $z^4 + c$		$z^2 + c$	
(5)	(a) (b)	The Laplace transform of t^3 is given by $s-3$ $1/s^3$	(c) (d)	6/s ⁴ 6/s ³	
(6)	(a) (b)	The number of generators of $S(U(x))$ is 2^{n+1}	(c)	$n^2 + 1$ $n^2 - 1$	
(7)	(a) (b)	Which of the following is a valid real co 67,200.98	onstar (c) (d)	-0.567	
(8)		The correct answer for the following exREAL:: a=2.5,b=2.5 a/2.5/b			
	(a) (b)	1.0 0.25	(c) (d)	0 0.4	

Q:2		Answer any 7 of the following 9 questions briefly. [02 marks each]	[14]
	1 2 3 4 5 6 7 8 9	Explain outer product and contraction of tensors. Show that Eigen values of a Hermitian operator are real. What are linearly independent vectors and unitary operators? Define complex number and give its geometrical representation. Define analytic function. Write Cauchy-Riemann conditions. Explain group multiplication table. Explain homomorphism and isomorphism. What are input output statements? Define array with the help of an example.	
Q:3	(a)	Define linear vector space. Explain scalar product and triangle inequality.	[6]
	(b)	Prove that $\begin{pmatrix} -xy & x^2 \\ y^2 & xy \end{pmatrix}$ is a tensor.	[6]
		OR	
	(b)	Write a note on dual vectors and Cauchy-Schwarz inequality.	[6]
Q:4	(a)	Using Cauchy's second integral theorem show that the nth order derivative of an analytic function is given as $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_c \frac{f(z)}{(z-z_0)^{n+1}} dz$.	[6]
	(b)	Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^{2})^{2}}.$	[6]
	(b)	OR Explain how Green's function can be obtained for a one dimensional problem. Obtain Green's function for $\frac{d^2y}{dx^2} + \omega^2y = 0$ where $f(x)$ is known function and $y(0) = 0$ and $y(L) = 0$.	[6]
Q:5	(a)	Obtain the solution of a damped oscillator using Laplace transform, given by equation $mx''(t) + bx'(t) + kx(t) = 0$ with initial conditions $x(0) = x_0$, $x'(0) = 0$.	[6]
	(b)	Obtain the Fourier transform of a finite wave train. Using the result derive the energy-time uncertainty relation.	[6]

OR
(b) Write notes on (i) convolution theorem (ii) Fourier transform of [6]

derivatives.

Q:6 (a) Using suitable example, explain in detail the concept of subroutines. [6]

(b) Explain DO loops. Write a FORTRAN90 program to compute the sum of [6] integers 1 to 20 using a DO loop.

OR

(b) Using suitable illustration, explain in detail the IF-ELSEIF construct. [6]

(3)

. .