SEAT No.

No. of Printed Papers: 02

SARDAR PATEL UNIVERSITY

M.Sc. (Physics) 1st Semester Examination Friday, 22th March, 2019 Subject: PS01CPHY22

(Atomic and Molecular Spectroscopy and Statistical Mechanics) Time: 02:00 pm to 05:00 pm Total Marks: 70					
Q-1	Eight multiple choice question	ns. (MCQ)		[01 mark each]	
(a) 2. Id (a) 3. In (a)	ne structure of H-atom is obtained a Non-relativistic (b) Relativistic (c) entify the pair of meta-stable states (c) 2S and 2P (b) 1S and 2S (c) 2 ³ S and Co ₂ laser the gas proportion of Co ₁ 1:2:3 (b) 10:1:2 (c) 3:2:1 (d) 1:	Darwin (d) No of Helium aton d 2 ³ P (d) 2 ³ S a Co ₂ , N ₂ and H 23:2	one n. and 2 ¹ S te is		
	metastable state has a much long 10^{-3} s (b) 10^{-2} s (c) 10^{-10} s (d) 10^{-8}		than that o	f the normal excited states ~	
d (a	Which of the following gives the rensity matrix formalism? a) $Tr(\hat{\rho}\hat{G}) = 1$ (b) $Tr(\hat{\rho}) = 1$ Which of the following is correct:	(c) $\hat{\rho}\hat{G} = 1$ ((d) $\hat{\rho} = 1$		
8) (1) (4)	a) a large number of particles according it is purely of a quantum mechan it takes place at the best in moral) All of the above are correct.	umulates in a anical origin.	single quantum	n state.	
tı	Which of the following would sansition?			e during a second-order phase	
8, A	a) specific heat (b) energy coording to the theory of Brown a fluid is proportional to (η being) η (b) η^2	ian motion, thing the viscosi	ne mean-square ty of the fluid)	e displacement of a particle $\langle x^2 \rangle$	
Q -2	Attempt any 7 of the following	g 9 question l	briefly.	[02 marks each]	

- 1. Write Schrodinger equation for two-electron atoms and explain each term of equation with necessary diagram.
- 2. Calculate the ionization energy of the Li²⁺ ion with the electron in its ground state, first excited state and second excited state.
- 3. Define Lamb shift and in H-atom energy level diagram with lamb shift.
- 4. Explain different vibration modes of CO₂ molecules
- 5. Explain in brief CARS

- 6. For the canonical ensemble, write the density matrix in energy representation and derive the expression for the density operator $\hat{\rho} = e^{-\beta \hat{H}}/Tr(e^{-\beta \hat{H}})$.
- 7. Define the fugacity of a physical system described using statistical mechanics. Explain the range of values it can attain for Fermi systems and Bose systems.
- 8. What are critical exponents? Write the relationship between the critical exponents α , β , γ and, the corresponding quantities specific heat, order parameter and correlation radius respectively.
- 9. Give a brief description of the Ising model.

Q-3

(a) Obtain time independent three dimensional Schrödinger equation for Hydrogen atom.

[06]

(b) How many degenerate states are possible for n= 1, 2, 3 and 4 in Hydrogen atom? Draw H- atom energy level diagram with all degenerate states up to n=4. A H-atom undergoes a quantum jump from n=2 to n=1, what is the energy of the photon emitted by the atom in this process? In which region of the electromagnetic spectrum does this transition appears? [06]

OR

(b) Derive Thomas Fermi equation for many electron system

[06]

Q-4

(a) Derive threshold pump power for three level laser systems.

[06]

(b) Write a detail note on Semiconductor Laser.

[06]

OR

• (b) Explain construction, working and energy level diagram of He-Ne Laser.

[06]

Q-5

(a) For a free particle in a box, derive the expression for the density matrix in coordinate representation. Also, prove that the expectation value of the Hamiltonian $\langle H \rangle = \frac{3}{2}kT$.

[06]

(b) Explain how the statistical equilibrium of white dwarf stars can be explained using Fermi-Dirac statistics. Write the mass-radius relationship for these stars and discuss the Chandrasekhar limit. [06]

 $OR \setminus$

(b) Describe and discuss Mayer's cluster expansion for a real gas.

[06]

Q-6

(a) Discuss in detail the classification of phase transitions.

[06]

(b) Derive the Boltzmann transport equation.

[06]

OR

(b) Describe the theory of Brownian motion in a fluid and derive the expression for the mean-square displacement of particles in terms of the diameter of the particles and the viscosity of the fluid.

[96]

