હિશ્

No. of printed pages: 02

SARDAR PATEL UNIVERSITY

M.Sc. Physics Ist Semester Examination (Nc)
Day: Thursday, Date: 19/04/2018, Time: 02:00 p.m. to 05:00 p.m.
Subject: PHYSICS, Paper:PS01EPHY01

Title: Elements of Solid State Physics

Ins	tru	cti	on	S	:

Figu	ures to the right indicate marks.	Total Marks: 70			
Q.1	Write answer of all questions by showing your choice aga number.	inst the question	[8]		
	(i) Crystalline materials differ from amorphous material	by			
	(a) containing different chemical elements(b) having periodic spacing of atoms(c) being natural rather than manmade(d) all of the above				
	(ii) An infinite periodic arrangement of points in a space (a) lattice (b) symmetry (c) zone (d) plane	is known as:			
	(iii) The group velocity is define by: (a) dω/dt (b) dt/dω (c) - dω/dt (d)) - dt/dω			
	(iv) The range of the first Brillouin zone of linear lattice 1 (a) - $2\pi < K \le 2\pi$ (b) $-3\pi < K \le 3\pi$ (c) $-\pi/a < K \le \pi/a$				
	(v) In a solid there are total shear and normal s (a) 3 (b) 6 (c) 9 (d) 12	tresses.			
	(vi) Under hydrostatic pressure, dilation is				
	(a) Infinity (b) zero (c) positive (d) n	egative			
	(vii) In a semiconductor, near the top of the band the eff (a) infinity (b) zero (c) negative (d) po				
	(viii) A Diamagnetic material has susceptibil (a) infinity (b) zero (c) positive (d) ne	ity. gative			
Q.2	Attempt any Seven of the following: (i) Define: Unit cell and Primitive cell (ii) What is packing fraction? Calculate the packing fraction for BCC structure.				
	(iii) Differentiate between Miller indices and Miller Brav with proper example.	ais indices			

(P.T.O.)

- (iv) Describe the continuum limit of lattice vibration.
 (v) Explain in brief thermoelectric effect in semiconductor.
 (vi) Prove that velocity of holes is same as that of velocity of
- (vi) Prove that velocity of holes is same as that of velocity of an electrons in semiconductor.
- (vii) Describe impurity conductivity in semiconductor in brief.
- (viii) Draw the experimental set up used to determine elastic constants of solid and write the equations to determine velocity of shear waves.
- (ix) Explain direct band gap in semiconductor in brief.
- Q.3(a) Differentiate the terms crystalline and amorphous solids. Write down seven [6] crystal system with their lattice parameters.
- Q.3(b) Draw and describe the crystal structures of the diamond and CsCl giving [6] coordinate of the atoms with proper illustration.

OR

- Q.3(b) Explain in detail the conventional unit cell of hexagonal close packed (HCP) [6] structure using necessary diagram.
- Q.4(a) Define lattice vibration and obtain the relation to explain the origin of [6] acoustical and optical branch in linear diatomic lattice.
- Q.4(b) Obtain the dispersion relation for one dimensional mono-atomic lattice. [6]
- Q.4(b) Explain crystal momentum. Find out the equation of energy gain and loss of [6] the scattered neutrons by phonons.
- Q.5(a) Obtain an equation for longitudinal wave and the transverse wave [6] propagate along the [100] direction in a crystal.
- Q.5(b) What is intrinsic semiconductor? Derive an expression for the carrier [6] concentration in case of intrinsic semiconductor.

OB

- Q.5(b) Using necessary diagram, find out the expression for the longitudinal and [6] transverse waves propagate in the cubic crystal in [111] direction.
- Q.6(a) What is effective mass? Describe physical interpretation of effective mass [6] and explain effective masses in semiconductors using necessary diagram.
- Q.6(b) Define dipole moment and derive an expression for Lorentz field and field [6] of dipoles inside the cavity using suitable diagram.

OR

Q.6(b) What is demagnetization? With the help of necessary diagram describe [6] cooling by isentropic demagnetization in detail.