[117 & A-6]]

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar

M. Sc. (Physics) 1st Semester Examination (Nc) Tuesday, 10th April, 2018

Time: 02:00 pm to 05:00 pm

Subject: PS01CPHY01 [Mathematical Physics & Computer Programming]-Old Course

Total Marks: 70

Note: (1) Figures to the right indicate marks.

(2) Symbols have their traditional meaning.

Q:1 Attempt all of the following Multiple choice type questions. [01 mark each] [08]

- (1) Two vectors \vec{a}_1 and \vec{a}_2 are defined as linearly dependent if two numbers x_1 and x_2 can be found such that
 - (a) $x_1 \neq 0 \ x_2 \neq 0$

(c) $x_1 = 0 \ x_2 \neq 0$

(b) $x_1 = 0$ $x_2 = 0$

- (d) $x_1 \neq 0 \ x_2 = 0$
- (2) The eigen values of matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ are
 - (a) 1,2

(c) 0,2

(b) 1.0

- (d) 1,1
- (3) If $z=re^{i\theta}$ then |dz| equals
 - (a) $r d\theta$

(c) e"

(b) 1

- (d) r dz
- (4) The sum of a complex number and its conjugate is
 - (a) complex

(c) real

(b) zero

- (d) imaginary
- (5) If the correspondence between elements of two groups preserves group multiplication then the two group are
 - (a) commutative

(c) isomorphic

(b) abelian

- (d) homomorphic
- (6) $\{\delta(t)\}=1$ is also called
 - (a) impulse function.

(c) eigen function.

(b) Heaviside function.

- (d) Laplacian function
- (7) Which of the following is a valid real constant
 - (a) 11,000.0

(c) 237

(b) 120.33

- (d) 13.0°
- (8) Which is the correct precedence of arithmetic operators
 - (a) Unary -; **; *,/; +,-

(c) Unary -; *,/;+,-;**

(b) Unary -; **; +,-; *,/

(d) **; *,/; +,-; Unary -

CP. T. O.)

Q:2 Answer any 7 of the following 9 questions briefly. [02 marks each] [14]

- 1 Show that Eigen values of a Hermitian operator are real.
- 2 Explain quotient rule.
- 3 What are linearly independent vectors and unitary operators?
- 4 Define (i) simply connected region (ii) essential singularity
- 5 Is $f(z) = z^2$ analytic?
- 6 Define simple pole and Laurent series.
- 7 Describe Parseval's relation.
- 8 Give example of a DO loop.
- 9 Give the general structure of a FORTRAN program.
- Q:3 (a) Write a note on dual vectors and Cauchy-Schwarz inequality. [6]
 - (b) Prove that $A = \begin{pmatrix} -xy & x^2 \\ -y^2 & -xy \end{pmatrix}$ is a tensor. [6]

OR

- (b) A covariant tensor has components xy, 2y-z², xz in rectangular co- [6] ordinates. Find its covariant components in spherical co-ordinates.
- Q:4 (a) Using Cauchy's second integral theorem show that the nth order derivative [6] of an analytic function is given as $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_c \frac{f(z)}{(z-z_0)^{n+1}} dz$
 - (b) Find the residue of $f(z) = \frac{z^4}{(z-1)^3(z-2)(z-3)}$ at z = 1. [6]

OR

- (b) Obtain Green's function for the boundary value problem defined by [6] $\frac{d^2y}{dx^2} k^2y = f(x) \text{ with } y(\pm \infty) = 0.$
- Q:5 (a) Show that Fourier transform can be used to resolve a finite pulse into [6] sinusoidal waves.
 - (b) Write a note on group, its representation and character. Using an [6] illustration explain the group multiplication table.

OR

(b) Solve a damped harmonic oscillator problem using Laplace transform. [6]

Q:6 (a) Explain with proper examples, INPUT-OUTPUT statements. [6]
(b) Write a note on subroutines. [6]

OR
(b) Explain with the help of suitable examples, constants and variables. [6]

_____X____