No. of printed pages: 03

SARDAR PATEL UNIVERSITY

M.Sc. Physics Ist Semester Examination
Day: Wednesday, Date: 13/04/2016, Time: 10.30 a.m. to 01.30 p.m. Subject: PHYSICS, Paper:PS01EPHY01 Subject: Elements of Solid State Physics

Instructions: (a) Figure to the right indicate marks.	Total Marks: 70
Q.1 Write answer of all questions by showing your choi question number.	ce against the [8]
(i)The Miller indices of the plane parallel to y and a (a) (100) (b) 010 (c) 001 (d) (11	z axes are:
(ii)Which of the following metals crystallize in fcc (a) Al (b) Zn (c) Na (d) CsC	structure?
(iii)The number of lattice points in a primitive cell (a) 1 (b) 2 (c) 3 (d) 6	are:
(iv) In a ferromagnetic material, the spontaneous panishes above a certain temperature called_temperature. (a) Neel (b) Debye (c) Fermi (d) Curio	
(v) When boron atoms are added to pure silicon, (a) p-type semicondutor (b) n-type semicond (c) metal (d) insulator	we get uctor
(vi) Donor type of impurity is formed by adding it valency: (a) 3 (b) 4 (c) 5 (d) 6	impurity of
(vii) The energy difference between top of the val bottom of conduction band is called (a) Indirect (b) direct (c) both direct and in	Danu gap.
(viii) At the top of the valence band, the effective (a) Positive (b) negative (c) zero	e mass is: (d) infinity
Q.2 Attempt any Seven of the following: (i) What are Miller indices? How they are deter (ii) Explain zone and forms in brief. (iii) With help of suitable diagram explain first	

- (iv) List the seven crystal system giving detail.(v) Explain thermoelectric effect in semiconductor.(vi) What is dilation? Derive expression of it.
- (vii) Prove that $C_{44} = 1/(S_{44})$
- (viii) Derive equation of motion of an electron in energy band.
- (ix) What is hole? Prove that wave vector of hole is opposite sign to that of wave vector of an electron i.e. $k_h = -k_c$.
- Q.3(a) Explain primitive cell and unit cell. Define symmetry elements and [6] symmetry operation with proper illustration.
- Q.3(b) Differentiate the following:

 (i)Rotation symmetry & screw symmetry

 (ii)Reflection symmetry & glide symmetry.

 List all the possible screw & glide symmetry. Display 2₁, 4₂ screw and 'C' glide.
- Q.3(b) Display CsCl and NaCl crystal structure in detail using suitable [6] schematic diagram. Write down the co-ordinates for each atom for both the structures.
- Q.4(a) Explain quantization of lattice vibrations in detail. [6]
- Q.4(b) Deduce the energy and momentum conservation laws for neutrons [6] inelastically scattered by phonons.

OR

- Q.4(b) Analyze the vibrational motion of a diatomic lattice and obtain [6 expression for the vibration frequencies ω as a function of the wave vector k.
- Q.5(a) Show that velocity of propagation of shear wave moving along [6] [110] direction with particle motion along a [110] direction in a cubic crystal is: $V_s = \left\{\frac{c_{11} c_{12}}{2\rho}\right\}^{1/2}$
- Q.5(b) What is intrinsic semiconductor? Obtain an expression for the [6] intrinsic carrier concentration in an intrinsic semiconductor. Under what condition will Fermi level is middle of the forbidden gap?

OR

Q.5(b) How does one experimentally determine the elastic constants of a [6] cubic crystal? Give description of the experimental set up and mention the principle uses for the determination of elastic constants.

- Q.6(a) Explain 'internal field' in a solid dielectric. Obtain Clausius [6] Mossotti formula relating macroscopic dielectric constant with microscopic polarizabilities.
- Q.6(b) Explain the followings: [6]
 (a)Ferromagnetic order, (b) Curic point and (c) exchange integral.
 OR
- Q.6(b) What are paramagnetic and diamagnetic materials? Give [6] examples. Derive an expression for the paramagnetic susceptibility of conduction electron.

XXXXXX

(3)