No. of printed pages: 03

SARDAR PATEL UNIVERSITY

M.Sc. Physics Ist Semester Examination

Day: Tuesday, Date: 28/04/2015, Time: 10.30 a.m. to 01.30 p.m.

Subject: PHYSICS, Paper:PS01EPHY01 Subject: Elements of Solid State Physics

w			
In	stri	ectio	ns:

(a)	Figure to the right indicate marks.	Total Marks: 70
2 m	and the second s	

(b) All questions are compulsory.

Q.1	Write answer of all questions by showing your choice against	the [8]
	question number.	

(i) Unit cell of b.c.c. structure i	e is	ucture	stru	.c.c.	ł	of	cell	Unit	(i)	
-------------------------------------	------	--------	------	-------	---	----	------	------	-----	--

(a) Primitive (b) non-primitive

(c) may be primitive or non-primitive (d) none of these

(ii) Miller indices (hkl) represents:

(a) a set of parallel planes

(b) a perpendicular plane

(c) a set of perpendicular plane

(d) a set of arbitrarily oriented plane

(iii) In a f.c.c. structure, the number of lattice point per unit cell is:

(a) 2

(b) 4

(c) 3

(d) 1

(iv) At ⁰K, semiconductor behaves like:

(a) Insulator

(b) conductor

(c) superconductor

(d) none of these

(v) If you have p-type of material, then location of Fermi level is :

(a) Just above valence band (b) Just below conduction band

(c) Centre of valence band and conduction band

(d) Above conduction band

(vi)
$$\sqrt{\frac{C_{11} + 2C_{12} + 4C_{44}}{3\rho}}$$
 equation is used for velocity of

longitudinal wave in direction is:

(a) [111]

(b) [100]

(c) [110]

(d) [010]

(vii) For a given dielectric, the electronic polarizability ($\alpha_\text{e})$ is :

(a) increase with temperature (b) decrease with temperature

(c) not affected by temperature change

(d) increase and then decrease with temperature

	(a) paramagnetic (b) diamagnetic (c) ferromagnetic (d) ferrimagnetic	
Q.2	Attempt any Seven of the following: (i) Draw the diagram of s.c., f.c.c. and b.c.c. (ii) What do you mean by group velocity?	[14]
	 (ii) What do you mean by group velocity? (iii) Explain first Brillouin zone using necessary diagram in brief. (iv) What is hole? Show that effective mass of hole is opposite sign to that of effective mass of an electron at the same point of energy band. (v) What is mobility of an electron? Explain intrinsic mobility in 	
	 (v) What is mobility of an electron? Explain intrinsic mobility in semiconductor. (vi) What is extrinsic semiconductor? Explain donor and acceptor state in semiconductor using necessary diagram. (vii) Define band gap. Explain the direct and indirect band gap in semiconductor using necessary diagram. (viii) Explain effective masses in semiconductor in brief. (ix) Discuss nuclear demagnetization in brief. 	
Q.3(a)	Differentiate between (i) Symmetry element and symmetry operation. (ii) Rotoreflection and Rotoinversion. Display the followings: 2, \(\overline{2}\), \(\overline{2}\) Draw the screw 2 ₁ , 3 ₂ and 'a' glide.	[6]
Q.3(b)(i) (ii)	transformation matrix for two set of planes. (310), (410), (001) and (450), 560), (001). Give the total number of crystal system, Bravais lattice, point group and space group.	[6]
Q.3(b)(i) (ii) (iii)	OR Prove that $2/m = i$ giving proper illustration. Do the following plane belong to same zone $(\overline{110})$, (311) and (134). Give the list of total screw and glide.	[6]
Q.4(a)	What is dispersion relation? Discuss the salient feature of dispersion curve for monoatomic lattice giving derivation of it.	[6]
Q.4(b)	Obtain the necessary equation for dispersion relation for diatomic lattice.	[6]

(viii) A substance having positive susceptibility is called:

OR

- Q.4 (b) What do you mean quantization of lattice vibration? Discuss a [6] method for measurement of phonon dispersion in inelastic neutron scattering.
- Q.5(a) Give detail description of the experimental set up and mention the [6] principle one use for the determination of elastic constants.
- Q.5(b) Deduce the expression for the velocity of the longitudinal and [6] transverse waves in the [100] direction in a cubic crystal.

OR

- Q.5(b) What is Hall effect? Discuss the physical sigificance of Hall effect. [6] What are the uses of this effect?
- Q.6(a) Differentiate between paramagnetism and diamagnetism? Explain [6] quantum theory of paramagnetism in detail.
- Q.6(b) Define susceptibility. Discuss paramagnetic susceptibility of conduction electron using necessary diagram in detail. [6]

OR

Q.6(b) What is meant by local field? Obtain Clausius-Mosotti formula [6] relating macroscopic electric field.

XXXXXX