Subject: PSOICPIIYOI |Mathomatical Physies \& Computer Propramminy|
latal Mankい / (1

Note: (1) Figures to the right indicate marks.
(2) Symbols have their traditiona! meaning.

Q:1 Attempt all of the following Maltiple choice type questions. \| 01 mark cach| |08|
(1) The number of components in a tensor of rank 2 in 3 dimensional space is
(a) 9
(c) 27
(b) 3
(d) 81
(2) A technique for creating new, higher rank tensors is
(a) Inner product
(c) Cauchy-Schwart incquality
(b) direct product
(d) quotient rule
(3) $\int_{z-2}^{z^{\prime}}$ wherec is $|x| \mid$ is
(a) 0
(c) πi
(b) $2 \pi i$
(d) $4 \pi i$
(4) For a complex variable $z, z+z^{*}$ is equal to
(a) zero
(c) imaginary
(b) real
(d) complex
(5) The Laplace transform of 1 i.e. $£\{1\}$ is
(a) s^{2}
(c) $1 / \mathrm{s}$
(b) 1
(d) s
(6) Integral transform based on the kernel $e^{i \omega t}$ if known as
(a) Laplace transform
(c) Mellin transform
(b) Henkel transform
(d) Fourier transform
(7)

For a DO loop, DO $\mathbf{i}=-10,2$ the number of iterations will be
(a) 10
(c) 13
(b) 0
(d) 12
(8)

If $\mathrm{i}=45$ then $10^{*} \mathrm{i} / 10$ gives
(a) 4.5
(c) 0
(b) 40
(d) 45

Q:2 Answer any 7 of the following 9 questions briefly. [02 marks each]
1 Define (i) unitary operator (ii) eigen value
2 Explain quotient rule.
3 Show that z^{2} is analytic.
4 Define complex quantity. Show that $z z^{*}$ is real quantity.
5 Define Laplace transform.
6 Explain the term "convolution".
7 Explain IF-ELSEIF statement using exam
8 Write full form of FORTR \wedge N. How is a R RTRAN program compiled?
9 Define with suitable examples constams a variablest ?
Q:3. (a) Define Hermitian operator and prove that its Stgen values are real quantities. Also explain projection operators. $\quad 3$
(b) Write note on types of tensors and their a gebra. ema

OR

(b) Write notes on (i) covariant derivative (ii) geodetic equation.

Q:4 (a) If $f(z)$ is a single valued and analytic throughout a simply connected region R , and if c is any closed contour interior to R and enelosing z_{0}, then show that $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{\left(z-z_{0}\right)}$.
(b) Define Green's function. Obtain Green's function for $\frac{d^{2} y}{d x^{2}} k^{2} y \cdots f^{\prime}(x)$ where $y(\pm \infty)=0$.
OR
(b) Discuss in short conformal mapping. Disquss the mapping of $w=z^{2}$.

Q:5 (a) Obtain Laplace transform for the dampe foscillator.
(b) Using proper integral transform, exply how a finite pulse could be resolved into sinusoidal waves.

OR
(b) With proper illustrations, write a detaf note on the group concept in \mid o| various branches of physics.

Q:6 (a) Write a short note on DO loops. Write a $\mathbf{~ D R T R A ̊ N 9 0 ~ p r o g r a m ~ t o ~ c o m p u t e ~}$ the sum of even integers making use of DO loops.
(b) Write short notes on (i) arithmetic expressions (ii) input-output statements.

OR
(b) Explain format specifications with the help of suitable examples.

