(30)

No. of Printed Pages: 02 SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar M. Sc. (Physics) 1st Semester Examination Tuesday, 21st April, **2015**

Time: 10:30 am to 04:30 pm

Subject: PS01CP11Y01 [Mathematical Physics & Computer Programming]

Total Marks: 70

Si⁄

Note: (1) Figures to the right indicate marks.

1

(2) Symbols have their traditional meaning.

Q:1	Attempt all of the following Multiple choice type questions. 01 mark each				
(1)	(a) (b)	The number of components in a tensor of 9 3	rank (c) (d)	2 in 3 dime nsional space is 27 81	
(2)	(a) (b)	A technique for creating new, higher ran Inner product direct product	k tens (c) (d)	ors is Cauchy-Schwartz inequality quotient rule	
(3)		$\oint_{c} \frac{z^{2}}{z-2}$ where c is $ z = 1$ is			
	(a) (b)	0 2 <i>л</i> і	(c) (d)	πi 4πi	
(4)	(a) (b)	For a complex variable z, z+z* is equal zero real	to (c) (d)	imagi nar y complex	
(5)	(a) (b)	The Laplace transform of 1 i.e. £{1} is s ² 1	(c) (d)	1/s s	
(6)	(a) (b)	Integral transform based on the kernel <i>e</i> Laplace transform Henkel transform	iat (c) (d)	known as Mellin transform Fouri er tran sform	
(7)	(a) (b)	For a DO loop, DO 1 = -10,2 the numb 10 0	er of (c) (d)	iterations will be 13 12	
(8)	(a) (b)	If i=45 then 10*i/10 gives 4.5 40	(c) (d)	0 45	

:1:

Q:2 Answer any 7 of the following 9 questions briefly. [02 marks each] [14] 1 Define (i) unitary operator (ii) eigen value 2 Explain quotient rule. 3 Show that z^2 is analytic. Define complex quantity. Show that zz* is real quantity. 4 5 Define Laplace transform. 6 Explain the term "convolution". 7 Explain IF-ELSEIF statement using exam Write full form of FORTRAN. How is a FORTRAN program compiled? 8 Define with suitable examples constants are variables 9 Q:3 Define Hermitian operator and prove that its Eigen values are real [6] (a) quantities. Also explain projection operators. 44E Write note on types of tensors and their algebra. (b) [6] OR Write notes on (i) covariant derivative (ii) geodetic equation. [6] (b) Q:4 If f(z) is a single valued and analytic throughout a simply connected region [6] (a) R, and if c is any closed contour interior to R and enclosing z_0 , then show that $f(z_0) = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - z_0)}$. (b) [6] Define Green's function. Obtain Green's function for $\frac{d^2y}{dx^2} k^2y - f(x)$ where $y(\pm \infty) = 0$. OR Discuss in short conformal mapping. Discuss the mapping of $w=z^2$. [6] (b) Obtain Laplace transform for the dampedoscillator. Q:5 (a) [6] (b) Using proper integral transform, explain how a finite pulse could be [6] resolved into sinusoidal waves. OR With proper illustrations, write a detailed note on the group concept in (b) 6 various branches of physics. Write a short note on DO loops. Write a **CORTRAN90** program to compute [6] Q:6 (a) the sum of even integers making use of **D** loops. Write short notes on (i) arithmetic expressions (ii) input-output statements. [6] (b)**OR** Explain format specifications with the help of suitable examples. [6] (b)-**X-**® :2: