Sardar Patel University

M.Sc. (Sem-III), PS03EMTH37, Mathematical Probability Theory; Thursday, 1^{st} November, 2018; 02.00 p.m. to 05.00 p.m.

Maximum Marks: 70

Note:	(i) Notations and	terminologies are	standard; (ii)	Figures to the	right indicate marks.
-------	-------------------	-------------------	----------------	----------------	-----------------------

11 1	A .	7.7	e 11	
()	Answer	the	toll	OWING
A. T	TITION	ULLU	LOIL	OMITTE.

[8]

1. Let (Ω, \mathcal{A}, P) be probability space and $A, B \in \mathcal{A}$. Which one from following is true?

(A) $P(A \cap B) \le P(A) + P(B) - 1$ (B) $P(A \cap B) > P(A) + P(B) - 1$

(C) $P(A \cup B) = P(A) + P(B) - 1$ (D) none of these

2. Let A, B and C be independent events with P(A) = 0.5, P(B) = 0.6 and P(C) = 0.1. Then $P(A^C \cup B^C \cup C) =$

(A) 0.27 (B) 0.73 (C) 0.71 (D) 0.69

3. Let F be a distribution function of rv X. Then for any $a, b \in \mathbb{R}$ with a < b, $P(a < X \le b)$ is

(A) F(a) - F(b) (B) F(b) - F(a)

(C) a-b

4. Var(2-X) =

(A) Var(-X)

(B) Var(X)

(C) 2 - Var(X) (D) 2 + Var(X)

5. $X_n \stackrel{P}{\to} 0 \Leftrightarrow$

(A) $\lim_{n \to \infty} E\left(\frac{|X_n|}{1 + |X_n|}\right) = 0$ (C) $\lim_{n \to \infty} E\left(\frac{|X_n|}{1 - |X_n|}\right) = 0$

(B) $\lim_{n\to\infty} E(X_n) = 0$

6. Let X_n be a sequence of independent random variables having values in $[0, \frac{1}{4}]$. Then $Z_n = X_1 \cdot X_2 \cdots X_n \xrightarrow{P}$ (A) 0 (B) $\frac{1}{4}$

(C) 1 (D) none of these

7. If $\varphi(u)$ is characteristic function of random variable X, then the characteristic function of 2 - X is

(A) $e^{2iu}\varphi(-u)$

(B) $e^{-2iu}\varphi(u)$

(C) $\varphi(-2u)$ (D) $\varphi(2-u)$

8. Which inequality used for proving Strong Law of Large Numbers?

(A) Chebyshev's inequality

(B) Jenson's inequality

(C) Holder's inequality

(D) Minkowski's inequality

Q.2 Attempt any seven:

[14]

(a) Let X be a discrete random variable having pmf, $p_X(x) = \begin{cases} \frac{k(x+1)}{5^x}, & x \in \mathbb{N} \cup \{0\} \\ 0, & \text{otherwise} \end{cases}$. Find k.

(b) Let $f(x) = ae^{-b|x|}, x \in \mathbb{R}, a, b > 0$. Determine the relation between a and b so that f is a pdf of some rv.

(c) Let X and Y be rvs having joint pdf $f_{XY}(x,y) = \begin{cases} x+y, 0 < x, y < 1 \\ 0, \text{ otherwise} \end{cases}$ Find $E(XY^2)$.

(d) State and prove Chebyshev's inequality.

(e) Prove: $|E(Z)| \le E|Z|$, where Z is a complex rv.

(f) Define convergence almost surely.

(g) Let X_n be a sequence of random variables with $E(X_n) = 3$ and $Var(X_n) = \frac{1}{n}$, $\forall n$. Does X_n converge in probability? Justify.

(h) State Lindeberg-Levy's theorem.

(i) Show that the characteristic function is continuous.

- Q.3
- (a) Let X be non negative extended random variable on (Ω, \mathcal{A}) . Then show that there exists an increasing sequence $\{X_n\}$ of non negative simple random variables on (Ω, \mathcal{A}) such that $X_n(\omega) \to X(\omega), \forall \omega \in \Omega$.
- (b) Let Z = (X, Y) be vector random variable. Show that $Z^{-1}(\mathcal{B}_2) = \sigma(X^{-1}(\mathcal{B}) \cup Y^{-1}(\mathcal{B}))$ [6] where \mathcal{B}_2 and \mathcal{B} are Borel σ -algebras in \mathbb{R}^2 and \mathbb{R} respectively.

OR

(b) Let X be a discrete rv having pmf $p_X(0) = \frac{1}{8}$, $p_X(1) = \frac{1}{4}$, $p_X(2) = \frac{1}{4}$, $p_X(-1) = \frac{1}{8}$, $p_X(-2) = \frac{1}{4}$, $p_X(x) = 0$, $x \neq -2, -1, 0, 1, 2$. Find pmf of a rv $Y = (X + 1)^2$.

Q.4

(a) State and prove C_r inequality.

[6] [6]

(b) Let D be dense subset of \mathbb{R} and $F_D: D \to [0,1]$ be non decreasing with $F_D(\infty) = 1, F_D(-\infty) = 0$. Define $F: \mathbb{R} \to [0,1], F(x) = \begin{cases} \inf_{y>x} F_D(y), y \in D, x \in D^C \\ F_D(x), x \in D \end{cases}$

Show that F is a distribution function.

OR

(b) Let X & Y be non negative rvs. Then show that E(aX + bY) = aE(X) + bE(Y), $a, b \in \mathbb{R}$. State results which you use.

Q.5

(a) Prove: $X_n \xrightarrow{P} X \Rightarrow f(X_n) \xrightarrow{P} f(X)$, where f is continuous function.

[6]

(b) If $X_n \xrightarrow{P} X$ then show that $X_n \xrightarrow{L} X$. Does the converse hold? Justify.

[6]

(b) State and prove Fatou's theorem.

Q.6

(a) State and prove Helly-Bray theorem.

[6]

(b) Let $\varphi(u)$ be the characteristic function of rv X and F be the distribution function of X. If a, b (a < b) are points of continuity of F then show that

$$F(b) - F(a) = \lim_{U \to \infty} \frac{1}{2\pi} \int_{-U}^{U} \frac{e^{-iua} - e^{-iub}}{iu} \varphi(u) du.$$

(b) Find probability density functions of random variables whose characteristic functions are (i) $e^{-\frac{1}{2}u^2}$ (ii) $e^{-|u|}$.

nemonia evendegradelia de 12 (d) La como estado de 12 (d) Pede