No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester III) Examination

Time: 2.00 To 5.00 PM

Subject: MATHEMATICS

Date: 3 - 11 - 2018, Saturday Paper No. PS03EMTH23 - (Graph Theory - II) Total Marks: 70 [8] Choose the correct option for each question: 1. The number of spanning trees in $K_{1,n}$ is (1)(d) 1 (b) n! The graph K₁₁ can be decomposed into copies of (2)(d) none of these (c) P_6 (b) P₅ (a) $K_{1,6}$ (3) A shortest path between two vertices in a graph can be obtained using (c) BFS algorithm (a) Kruscal algorithm (d) none of these (b) Dijkstra's algorithm (4) If f is a flow on a network N = (V, A), then $f(V,\{t\})$ is (d) none of these (c) $f(\{t\}, V)$ (b) $f({s},V)$ (a) $f(V,\{s\})$ (5) Let A be a matrix with spectrum $\{2, 1, -2, -3, -1\}$. Then det(A) =(d) -12(c) 12 (b) 3 (a) -3Let $G = K_{4,6}$. Then the non-zero eigen values for G is (d) 12 (c) 6(b) 4 The Ramsey number R(3, 3) is (7)(d) none of these (c) 9 (b) 6 (a) 3 If E = $\{a, b, c\}$ with $M = \{\{a\}, \{b\}, \{a,b\}\}\$ as hereditary system, then $C_M =$ (b) $\{\{c\}, \{b,c\}\}\$ (c) $\{\{c\}, \{a,c\}\}\$ (a) {c} Attempt any SEVEN: [14] 2. Find Pruffer code of all possible trees for which the degree sequence is (1,1,1,2,3). Give one graceful labelling of P₇ with detail. Define source and sink in a network. (c)

- Define u-v edge separating set and give one example of it. (d)
- Prove: If G is a simple graph with n vertices & e edges, then $2e(G) \le n(G)\lambda_{max}(G)$. (e)
- Prove: If G is k regular graph, then k is an eigen value of G. (f)
- State Pigeonhole Principle. (g)
- (h) Prove: R(p, 2) = p, for every $p \ge 2$.
- Prove: For $X \subset E$ and $e \in E$, $r(X + e) \le r(X) + 1$. (i)

(P.T.O.)

- Prove that for a set $S \subseteq \mathbb{N}$ of size n, there are n^{n-2} trees with vertex set S. [6] 3. How many trees are there with degree sequence (2,1,2,1,2)? Construct any one such [6] (b) tree. OR
 - Find $\tau(G)$ using Matrix-Tree theorem, for $G = C_5$. (b)
- Let f be a flow in a network N = (V, A) with value d. Prove that, if $A(X, \overline{X})$ is a cut [6] 4. (a) in N, then $d = f(X, \overline{X}) - f(\overline{X}, X)$. [6]
 - Define flow and cut in a network and give one example of it. (b)

- Using Kruskal's algorithm, find a shortest spanning tree for the graph below. [6] (b)

- [6] (a) Prove: For any graph G, $\chi(G) \le 1 + \lambda_{\max}(G)$.
 - Prove: If H is an induced sub graph of G, then $\lambda_{max}(H) \leq \lambda_{max}(G)$. [6] (b) OR
 - [6] Prove: If G is bipartite graph, then n0n-zero eigen values of G occur in pair $(\lambda, -\lambda)$. (b)
- [6] 6. Prove: $R(p, q) \le R(p-1, q) + R(p, q-1), \forall p, q > 2.$ (a)
 - [6] Prove (ANY ONE): In a hereditary system,
 - (i) Uniformity property (U) ⇒ Sub modularity property (R)
 - (ii) Sub modularity property (R) \Rightarrow Weak elimination property (C).