[8]

11

14

Seat No.:

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - III Examination Saturday, 03rd November, 2018 PS03EMTH08, Group Theory

Time:	02:00	p.m.	to	05:00	p.m.
-------	-------	------	----	-------	------

Maximum marks: 70

rd

Note	e: Figures to the rig notations whereve		arks of th	e respective o	questions. Assume standa	-
Q-1	Write the question n	umber and approp	oriate opti	on number c	only for each question.	
(a	$) \ \phi(\underline{\hspace{1cm}}) = \phi(\underline{\hspace{1cm}}$	_), where ϕ denot	es Euler's	totient function	on.	
	(i) 2,6	(ii) 5,9		(iii) 7, 11	(iv) 8,12	
(b) $\mathbb{Z}/7\mathbb{Z}$ is isomorphi	ic to				
	(i) S_7	(ii) \mathbb{Z}_7 .	(iii)	\mathbb{Z}^7	(iv) none of these	
(c) Order of automorp	phism group $\mathscr{A}(\mathbb{Z}_2)$	2) of \mathbb{Z}_2 is			
	(i) 1	(ii) 2		(iii) 3	(iv) 4	
(d) If $e \neq a \in \underline{\hspace{1cm}}$,	then $c_a \neq 1$.				
	(i) S_2	(ii) S_9		(iii) \mathbb{Z}_3	(iv) Z	
(e) A group of order	is simple.				
	(i) 11	(ii) 21		(iii) 121	(iv) 221	
(f	The order of 11-S	ylow subgroups of	S_{25} is			
	(i) 11	(ii) 121	(iii) 1	331	(iv) none of these	
(g	A p-Sylow subgroup	$\operatorname{up} H$ of a group G	; is unique	if H		
///					(iv) is finite	

- (h) Number of nonisomorphic abelian groups of order 128 is
 - (i) 5

- (ii) 15
- (iii) 20
- (iv) 64

Q-2 Attempt Any Seven of the following:

[14]

- (a) List invertible elements of the group \mathbb{Z}_6 .
- (b) Show that for two elements $f, g \in H = \{ f \in A(\mathbb{R}) : f(0) = 1 \}, f \circ g \notin H$.
- (c) For a group G and $g \in G$, define $T_g : G \to G$ by $T_g(x) = gxg^{-1}$, $(x \in G)$. Show that $T_g \in \mathscr{A}(G)$.
- (d) For a group G, define $\psi: G \to \mathscr{I}(G)$ by $\psi(g) = T_g$. Show that $\ker(\psi) = Z$.
- (e) Mention the number of conjugates of (1 2)(2 3) in S_3 and S_4 .
- (f) Show that $S_7 \approx \{ \tau \in S_9 : i\tau = i \text{ for all } i > 7 \}.$
- (g) Define a solvable group and give an example of the same.
- (h) Show that S_3 is not an internal direct sum of its proper subgroups.
- (i) If a group $G = N_1 \cdot N_2 = N_3 \cdot N_4$, then prove or disprove that $N_1 \approx N_3$ or $N_1 \approx N_4$.

(P.T.O.)

Q-3 (j) Let H, K be subgroups of a group G. Show that HK is a subgroup of G if and [6] only if HK = KH. (k) Let N be a subgroup of a group G. Show that N is normal if and only if every [6] right coset of N in G is also a left coset of N in G. OR [6] (k) Show that every cycle can be written as a product of transpositions. Q-4 (1) For a finite group G, show that "being conjugate to" is an equivalence relation on [6] G. Also prove that $c_a = o(G)/o(N(a))$. (m) Let G be a group, $a \in G$, and $\phi \in \mathscr{A}(G)$. Show that $o(a) = o(\phi(a))$. [6] OR (m) Let p be a prime number and G be a group of order p^n for some $n \in \mathbb{N}$. Then [6] show $Z(G) \neq \{e\}$. Q-5 (n) Let p be a prime and $n, m, r, \alpha \in \mathbb{N}$ such that $n = p^{\alpha}m, p^r \mid m$ but $p^{r+1} \nmid m$. Show that $p^r \mid \binom{p^{\alpha}m}{p^{\alpha}}$ but $p^{r+1} \nmid \binom{p^{\alpha}m}{p^{\alpha}}$. [6] (o) Let G be a finite group and p be a prime such that $p^m|o(G)$ but $p^{m+1}\nmid o(G)$ for [6] some integer $m \geq 1$. Using the class equation, prove that G has a subgroup of order p^m . OR (o) If A, B are finite subgroups of a group G, then prove that $o(AxB) = \frac{o(A)o(B)}{o(A\cap xBx^{-1})}$. [6] Q-6 (p) Suppose G is the internal direct product of N_1, N_2, \ldots, N_n . Show that $N_i \cap N_j =$ [6] $\{e\}$ for $i \neq j$. Also if $a \in N_i$, $b \in N_j$ then show that ab = ba. (q) If G and G' are isomorphic abelian groups, then show that for every integer s, [6] G(s) and G'(s) are isomorphic. OR (q) If two finite abelian groups are isomorphic, then show that they have the same [6] invariants.

11