No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester III) Examination

Date: 26-10-2018 , Fridan **Subject: MATHEMATICS** Time: 2.00 To 5.00 p.m.

Paper No. PS03EMTH01 - (Functional Analysis II)

Total Marks: 70

Note: Throughout the paper, X and Y denote nlspaces.

Choose the correct option for each question: 1.

[8]

- If $x \in K^n$, then which of the following is true? (1)(b) $||x||_2 \le ||x||_{\infty}$ (c) $||x||_1 \le ||x||_{\infty}$ (d) $||x||_1 \le ||x||_2$
 - (a) $||x||_{\infty} \le ||x||_1$
- Every linear functional on X is continuous, if X =
 - (a) l^{\prime}
- (b) ℂⁿ
- (c) C[0, 1]
- (d) none of these
- Let Y be a closed subspace of a nls X. Then X is a Banach space if and only if
 - (a) Y is a Banach space
- (c) both Y and X/Y are Banach spaces
- (b) X/Y is a Banach space
- (d) none of these
- A map F: $(C^1[0,1], \|.\|_{\infty}) \to (C[0,1], \|.\|_{\infty})$ defined by F(x) = x' is
 - (a) not linear

- (c) linear but not continuous
- (b) continuous but not linear
- (d) neither linear nor continuous
- Let $A \in BL(X)$. Which of the following is true?
 - (a) $\sigma(A) \subset \sigma_e(A)$
- (b) $\sigma(A) \subset \sigma_a(A)$
- (c) $\sigma_a(A) \subset \sigma_e(A)$
- (d) $\sigma_e(A) \subset \sigma(A)$
- For $x \in X$, let $j_x: X' \to K$ be defined by $j_x(f) = f(x)$. Then $||j_x|| =$
 - (a) 1
- (b) ||x||
- (c) ||f||
- (d) none of these

- Let $F \in BL(X,Y)$. Then
 - (a) ||F|| < ||F'||
- (b) ||F|| > ||F'||
- (c) ||F|| = ||F'||
- (d) none of these
- Let $\{x'_n\}$ be a sequence in X' and $x' \in X'$. Which of the following is true?
 - (a) $x'_n \xrightarrow{w*} x' \Rightarrow x'_n \xrightarrow{\parallel \cdot \parallel} x'$ (b) $x'_n \xrightarrow{w} x' \Rightarrow x'_n \xrightarrow{w} x'$ (c) $x'_n \xrightarrow{w*} x' \Rightarrow x'_n \xrightarrow{w} x'$ (d) $x'_n \xrightarrow{w} x' \Rightarrow x'_n \xrightarrow{w*} x'$

Attempt any SEVEN: 2.

- Prove: If $E \subset X$ is convex, then E^0 is convex. (a)
- If X is an infinite dimensional nls, then show that there is linear map from X to (b) K which is not continuous.
- State Uniform Boundedness Principle. (c)
- Show that \mathbb{R}^2 with $\|(x_1, x_2)\|_1 = |x_1| + |x_2|$, is not strictly convex. (d)
- Prove: If $F: X \rightarrow Y$ is continuous, then F is a closed map. (e)
- Let X be a Banach space. If a series $\sum_{n} x_n$ of elements of X is absolutely (f) summable, then show that it is summable in X.
- Define $\sigma_e(A)$, $\sigma_a(A)$ and $\sigma(A)$. (g)
- Prove: If $F, G \in BL(X, Y)$, then (F + G)' = F' + G'. (h)
- Define weak and weak* convergence in X'. (i)

[14]

			[6]
3.	(a)	State and prove Holder's inequality. State and prove Holder's inequality. $C[a,b]$ defines a norm on $C[a,b]$.	[6]
	(b)	State and prove Holder's inequality: Prove: For $f \in C[a,b]$, $ f _{\infty} = \{ f(t) : t \in [a,b]\}$ defines a norm on $C[a,b]$.	
	(b)	OR Let $F \in BL(X,Y)$. Define a map $\widetilde{F}: X/Z(F) \to Y$ by $\widetilde{F}(x+Z(F)) = F(x)$. Show	[6]
	(0)	that \widetilde{F} is linear and continuous.	
			[6]
4.	(a)	Prove: If Y is a Banach space, then $BL(X,Y)$ is complete.	[6]
4	(b)	Prove: If Y is a Banach space, and F: $X \rightarrow Y$ be linear. Prove that F is continuous if and Let X & Y be also as and F: $X \rightarrow Y$ be linear.	
	. ,	only if goF is continuous, for every $g \in Y'$.	
		OR N. 1. Democh separation theorem.	[6]
	(b)	State and prove Hahn-Banach separation theorem.	
5.	(a)	Prove: If X and Y are Banach spaces and F: $X \rightarrow Y$ is a closed linear map, then F	[6]
	. ` '	•	[6]
	(b)	Let $F: X \to Y$ be linear map. Prove that if there exists $\gamma > 0$ such that for every $y \in Y$, there is $x \in X$ with $F(x) = y$ and $ x \le \gamma y $, then F is an open map.	
		UK	[6]
	(b)	Let $A \in BL(X)$ and dim $X = \infty$. Show that $\sigma_e(A) = \sigma(A)$.	
	` '		[6]
6	. (a)	Prove: If X' is separable, then X is separable.	[6]
	(b	Let X be a finite dimensional space with dim $X = m$ and let $\{a_1, a_2, \dots, a_m\}$ be a	Ľ-J
	ζ-,	basis for X. Show that $\dim X' = m$.	
		() 2	[6]
	(b	Let X be a separable nls. Prove that every bounded sequence in X' has a weak*	•
		convergent subsequence.	

~X-