No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M. Sc. (Semester III) Examination

Date: 26-10-2018 , Fri day

Time: 2.00 To 5.00 p.m.

Subject: MATHEMATICS

(f) State Open mapping theorem.

(i)

(g) Let $A \in BL(X)$. Show that $\sigma_e(A) \subset \sigma_a(A)$.

(h) Prove: If $F, G \in BL(X, Y)$, then (F + G)' = F' + G'.

Cauchy sequence in X to Cauchy sequence in Y.

Paper No. PS03CMTH23 - (Functional Analysis II)

Total Marks: 70

Note: Throughout the paper, X and Y denote alspaces.

	1100	e: Tinoughout the paper	, A and I denote	mspaces.		
1.		Choose the correct or	otion for each ques	stion:	e de la companya de	[8]
	(1)	Let Y be a subspace of X. Which of the following is true? (a) If $Y \neq X$, then $Y^0 \neq \emptyset$ (c) If $Y^0 \neq \emptyset$, then $Y \neq X$				
		(b) If $Y \neq X$, then Y	$o = \emptyset$	(d) If $Y = X$, the	$n Y^0 = \emptyset$	
÷	(2)	Every linear functions (a) l^I	al on X is continud (b) C[0, 1]	ous, if $X =$ (c) \mathbb{C}^n	(d) none of these	
ja:	(3)	Which of the following (a) c_0	ng space is comple $(b)\ c_{00}$		(d) none of these	
A.	(4)	A map F: $(C^1[0,1], . _{\infty}) \to (C[0,1], . _{\infty})$ defined by $F(x) = x'$ is (a) closed and continuous (b) continuous but not closed (d) none of these				
	(5)	If $p < r < \infty$, then we (a) $l^p \subset l^\infty$ (ing is true? (c) $l^{\infty} \subset l^r$	(d) $l^p = l^r$	
• •	(6)	For $x \in X$, let j_x : X' – (a) 1	→ K be defined by b) $ x $	$j_x(f) = f(x)$. Then $ $ (c) $ f $	$ j_x =$ (d) none of these	
	(7)	Let $F \in BL(X,Y)$. The (a) $ F > F' $ ((c) $ F = F' $	(d) none of these	
	(8)	Let I be the identity of (a) \emptyset	perator on X . The b) $\{0,1\}$	$\operatorname{en} \sigma(I) = \operatorname{Let} F \in B$ (c) $\{0\}$	L(X,Y). Then (d) {1}	
2.		Attempt any SEVEN:				[14]
	(a) (b) (c) (d)	Prove: If $E \subset X$ is convex, then E^o is convex. Show that $\ \ _1$ and $\ \ _2$ are comparable norms on K^n . Show that \mathbb{R}^2 with $\ (x_1, x_2) \ _1 = x_1 + x_2 $, is not strictly convex. Let X be a Banach space. If a series $\sum_n x_n$ of elements of X is absolutely summable, then show that it is summable in X.				
	(e)	Prove: If a projection P on X is a closed map, then $R(P)$ and $Z(P)$ are closed in X .				

(P70)

Let $F: X \to Y$ be a linear map. Prove that if F is continuous, then it sends every

[6] Let Y be a closed subspace of a nls X. Show that, for $x + Y \in X/Y$, 3. $|||x+Y||| = \inf\{||x+y||: y \in Y\} \text{ defines a norm on } X/Y.$ Let $F: X \to Y$ be a linear map. Prove that F is continuous if and only if Z(F) is [6] (b) closed in X and a linear map $\tilde{F}: X/Z(F) \to Y$ defined by $\tilde{F}(x+Z(F)) = F(x)$, $x \in X$ is continuous. [6] Let $F: (\mathbb{R}^2, \|\cdot\|_1) \to \mathbb{R}$ be defined by F(x(1), x(2)) = 3x(1) + 2x(2). Show (b) that F is bounded and find ||F||. While the substitution is the constraint of X in \mathbb{R}^{n} [6] State and prove Hahn-Banach extension theorem. 4. (a) 6 Prove: If BL(X,Y) is a Banach space, then Y is complete. (b) OR Street of Management of the House House [6] Prove: The space $(C[0,1], \| \|_{\infty})$ is complete. if the situation was a court galander to the containing Let X be a Banach space and Y be a nls. Let $F_n \in BL(X,Y)$, $\forall n$. Suppose that for [6] 5. each $x \in X$, sequence $\{F_n(x)\}$ converges in Y. Define $F: X \to Y$ by $F(x) = \lim_{n} F_n(x)$. Show that, if E is totally bounded subset of X, then $\{F_n(x)\}$ converges uniformly to F(x) on E. Prove: If X and Y are Banach spaces and F: $X \rightarrow Y$ is a closed linear map, then F [6] anged with the shoot like each is is continuous. OR (b) Let $F: X \to Y$ be linear map. Prove that if there exists $\gamma > 0$ such that for every [6] $y \in Y$, there is $x \in X$ with F(x) = y and $||x|| \le \gamma ||y||$, then F is an open map. [6] Let $1 \le p \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. For $y \in Y$, let $f_y(x) = \sum_{j=1}^{\infty} x(j)y(j)$, $x \in l^p$. 6. (a) Prove that $f_y \in (l^p)'$ and $||f_y|| = ||y||_q$. Let $A \in BL(X)$ and dim $X = \infty$. Show that $\sigma_e(A) = \sigma(A)$. [6] OR [6] Let $X = (l^p, || \|_p), 1 \le p < \infty$. Define $A: X \to X$ by A(x(1), x(2), ..., x(n), ...) = (0, x(1), ..., x(n-1), ...). Show that $\sigma_e(A) = \emptyset$. Common through the common by the particle of the confidence of the Established Continuencia to A Statement and A of <u> Carabyana i i antrocal delegationales</u> $C_{2} \in \mathbb{R}$ browk. Wa group of this E only, by a chowolinear, there RC_{1}^{∞} and ZC_{2}^{∞} are object to NState Open manggabak diperkena The A of the more world of the A to I THE A PENER WHEN BY PARTY MINERAL one of the section of