SEAT No.

No of printed pages: 3

Sardar Patel University

Mathematics

M.Sc. Semester III

Monday, 22 October 2018

2.00 p.m. to 5.00 p.m.

PS03CMTH21 - Real Analysis II

Maximum Marks: 70

Q.1	Choose	the	correct	ontion	for	each	αf	the	following	ŗ
W/ L	CHOOSE	ひますぐ	COLLOCA	ODMOH	IUI	CUULL	OT.	0110	TOHOWIHE	۷.

[8]

- (1) Which of the following is true?
 - (a) If (X, \mathcal{A}, μ) is saturated, then it is σ finite.
 - (b) If (X, \mathcal{A}, μ) is saturated, then it is finite.
 - (c) If (X, \mathcal{A}, μ) is finite, then it is saturated.
 - (d) $(\mathbb{R}, \mathfrak{M}, m)$ is not saturated.
- (2) Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = e^{-x^2}$. Then the value of $\int_{\mathbb{R}} f d\delta_0$ is
 - (a) 0
- (b) 1
- (c) e

(3) Let m be the Lebesgue measure. Consider the signed measure $\nu = \delta_0 - m$ on $(\mathbb{R}, \mathfrak{M})$. Then the value of $\sup \{\nu(E) : E \text{ is a positive set} \}$ is

- (a) 1

- (d) ∞

(4) Which of the following is a pair of mutually singular measures on $(\mathbb{R}, \mathfrak{M})$?

- (a) m, η
- (b) η, δ_0
- (c) m, δ_0
- (d) none of these

(5) Let (X, \mathcal{A}, μ) be a finite measure space and 1 . Which of the followingis true?

- (a) $L^p(\mu) \subset L^r(\mu)$ (b) $L^p(\mu) \supset L^r(\mu)$ (c) $L^p(\mu) = L^r(\mu)$ (d) none of these

(6) If f is a continuous function on \mathbb{R} , then which of the following true with respect to the Lebesgue measure m?

- (a) f is essentially bounded
- (c) f is integrable
- (b) f is square integrable
- (d) none of these

(7) Let η be the counting measure and δ_0 be the Dirac measure concentrated at 0. Which of the following is an outer measure on \mathbb{R} ?

- (a) m
- (b) $m + \delta_0$
- (c) $\delta_0 \eta$
- (d) $\eta + \delta_0$

(8) Let μ^* be an outer measure on X and $E \subset F \subset X$. Which of the following is true?

(a) $\mu^*(E) \le \mu^*(F)$

- (c) $\mu^*(E \cup F) = \mu^*(E) + \mu^*(F)$ (d) $\mu^*(F) = \mu^*(F E) + \mu^*(E)$
- (b) $\mu^*(F-E) = \mu^*(F) \mu^*(E)$

Q.2 Attempt any Seven.

[14]

- (a) Let (X, \mathcal{A}, μ) be a measure space. If $s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$ and $t = \sum_{j=1}^{m} \beta_j \chi_{B_j}$ are nonnegative measurable functions on X and if $s \leq t$, then show that $\int_X s d\mu \leq \int_X t d\mu$.
- (b) Let (X, \mathcal{A}, μ) be a measure space. If f is integrable over X, then show that f is finite a.e. $[\mu]$ on X.
- (c) Define a complete measure space and give an example of a measure space which is not complete.
- (d) If $\{A, B\}$ and $\{A_1, B_1\}$ are Hahn decomposition of (X, \mathcal{A}, ν) , then show that $A\Delta A_1$ is a null set.
- (e) Let ν be a signed measure and μ be a measure on (X, \mathscr{A}) . If $\nu \perp \mu$ and $\nu \ll \mu$, then show that $\nu = 0$.
- (f) Let $1 \le p < \infty$. If $f, g \in L^p(\mu)$, then show that $f + g \in L^p(\mu)$ (do not use Minkowski's inequality).
- (g) If f and g are measurable, f = g a.e. $[\mu]$ on X and if f is essentially bounded, then show that g is essentially bounded.
- (h) Let μ^* be an outer measure. If E_1 and E_2 are μ^* measurable subsets of X and if $E_1 \cap E_2 = \emptyset$, then show that $\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2)$.
- (i) Let μ be a measure on an algebra \mathscr{A} of subsets of X. If $\{A_i\} \subset \mathscr{A}$, $A \in \mathscr{A}$ and $A \subset \bigcup_i A_i$, then show that $\mu(A) \leq \sum_i \mu(A_i)$.
- Q.3
- (a) Let (X, \mathcal{A}, μ) be a measure space. If f is an integrable function on X and if $\{E_n\}$ is [6] a sequence of pairwise disjoint measurable subsets of X, then prove in detail that

$$\int_{\bigcup_{n=1}^{\infty} E_n} f d\mu = \sum_{n=1}^{\infty} \int_{E_n} f d\mu.$$

(b) Let (X, \mathscr{A}) be a measurable space and f be a nonnegative measurable function on X. [6] Show that there is sequence $\{s_n\}$ of nonnegative measurable simple functions such that $s_n \leq s_{n+1}$ for all n and $s_n(x) \to f(x)$ as $n \to \infty$ for all $x \in X$.

OR

- (b) Let (X, \mathscr{A}, μ) be a measure space. Let a sequence $\{f_n\}$ of measurable functions such that $f_n(x) \to f(x)$ as $n \to \infty$ for all $x \in X$. If there exists an integrable function g such that $|f_n| \le g$ for all $n \in \mathbb{N}$, then show that $\int_X f_n d\mu \to \int_X f d\mu$ as $n \to \infty$.
- Q.4
 (c) Let (X, \mathcal{A}, μ) be a σ finite measure space, and let f and g be nonnegative measurable functions on X. If $\int_E f d\mu = \int_E g d\mu$ for all $E \in \mathcal{A}$, show that f = g a.e. $[\mu]$ on X.
- (d) Let ν_1 and ν_2 be finite signed measures on (X, \mathcal{A}) and $\alpha \in \mathbb{R}$. Show that $|\alpha \nu_1| = [6]$ $|\alpha| |\nu_1|$ and $|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$.

OR

- (d) If ν and μ are σ finite measures on a measurable space (X, \mathscr{A}) , then show that there exists a unique pair of measures ν_0 and ν_1 such that $\nu_0 \perp \mu$, $\nu_1 \ll \mu$ and $\nu = \nu_0 + \nu_1$.
- Q.5 (e) If $1 \le p < \infty$, then show that $L^p(\mu)$ is complete.
- . [6]
- (f) Let (X, \mathcal{A}, μ) be a measure space. When is a measurable function called essentially [6]

bounded? If f and g are essentially bounded and if α, β in \mathbb{R} , then show that both $\alpha f + \beta g$ and fg are essentially bounded.

OR

(f) Let $1 \leq p < \infty$ and $q \in (1, \infty]$ be such that $\frac{1}{p} + \frac{1}{q} = 1$, and let (X, \mathcal{A}, μ) be a finite [6] measure space. If F is a continuous linear functional on $L^p(\mu)$, then prove that there is unique $g \in L^q(\mu)$ such that

$$F(f)=\int_X fg d\mu \qquad (f\in L^p(\mu)).$$

Q.6

(g) Let μ be a σ - finite measure on an algebra \mathcal{A} , and let μ^* be the induced outer measure. Let \mathbb{B} be the σ - algebra of all (μ^*) - measurable subsets of X, and let \mathbb{B}' be the smallest σ - algebra of subsets of X containing \mathcal{A} . Show that the restriction of $\overline{\mu}$ to \mathbb{B}' is the unique extension of μ to \mathbb{B}' .

(h) Let μ^* be an outer measure on X. Show that the collection of all μ^* - measurable [6] subsets of X is a σ - algebra.

OR

- (h) Let F be a cumulative distribution function of a finite Baire measure μ on a Borel σ [6] algebra on \mathbb{R} . Then prove that following statements.
 - (A) F is bounded and increasing.
 - (B) F is right continuous on \mathbb{R} .
 - (C) F is left continuous at $x \in \mathbb{R}$ if and only if $\mu(\{x\}) = 0$.

. .