7 201	_/AS	3_

SEAT No.

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester III

Monday, 22 October 2018

2.00 p.m. to 5.00 p.m.

PS03CMTH01 - Real Analysis II

Maximum Marks: 70 [8] Q.1 Choose the correct option for each of the following. (1) Let η be the counting measure on $(\mathbb{R}, \mathfrak{M})$. Then the value of $\eta(\mathbb{Q})$ is (d) ∞ (b) 1 · (a) 0 (2) Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$. Then the value of $\int_{\mathbb{R}} f d\delta_0$ is (d) 2 (3) Which of the following is a signed measure but not a measure on $(\mathbb{R}, \mathfrak{M})$? (d) $m-\delta_0$ (c) $\eta + \delta_0$ (b) $\eta - \delta_0$ (a) m (4) Let A and B be positive set of the signed measure ν on (X, \mathcal{A}) ? Which of the following may not be a positive set? (d) $X - (A \cup B)$ (c) $A\Delta B$ (b) $A \cap B$ (a) $A \cup B$ (5) Which of the following $f: \mathbb{R} \to \mathbb{R}$ is essentially bounded with respect to the Lebesgue measure m? (c) f is differentiable (a) f is continuous (d) none of these (b) $f \in L^2(\mu)$ (6) Let $F:L^1(\mathbb{R})\to\mathbb{R}$ be defined as $F(x)=\int_{\mathbb{R}}f(x)dm(x)$. Then the value of $\|F\|$ is (d) 2 (7) Let μ^* be an outer measure on X, and let $\{E_n\}$ be a sequence of pairwise disjoint subsets of X. Which of the following is true? (c) $\cdot \mu^*(\bigcup_n E_n) = \sum_n \mu^*(E_n)$ (d) none of these (a) $\mu^*(\bigcup_n E_n) \leq \sum_n \mu^*(E_n)$ (b) $\mu^*(\bigcup_n E_n) \geq \sum_n \mu^*(E_n)$ (8) Let F be the cumulative distribution function of a finite Baire measure μ on $(\mathbb{R}, \mathcal{B})$. Which of the following is true? (c) $\lim_{x \to \infty} F(x) = 0$ (d) $\lim_{x \to -\infty} F(x) = 0$ (a) F is unbounded (b) F is differentiable (a) Let f be a function such that both |f| and f^2 are measurable. Show that f need not be Q.2 Attempt any Seven.

- measurable.
- (b) Show that every σ finite measure space is saturated.
- (c) Show that $(X, P(X), \eta)$ is a complete measure space.
- (d) Let (X, \mathcal{A}, ν) be a signed measure space. If $A \in \mathcal{A}$ and $\nu(A) < 0$, then show that A may not be a negative set.
- (e) If ν_1 and ν_2 are finite signed measures on (X, \mathscr{A}) , then show that $|\nu_1 + \nu_2| \leq |\nu_1| + |\nu_2|$.
- (f) If f is essentially bounded, then show that f is finite a.e. $[\mu]$ on X.

[14]

- (g) If f and g are measurable, f = g a.e. $[\mu]$ on X and if $f \in L^p(\mu)$, then show that $g \in L^p(\mu)$, where 1 .
- (h) Let μ^* be an outer measure. If E_1 and E_2 are μ^* measurable subsets of X and if $E_1 \cap E_2 = \emptyset$, then show that $\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2)$.
- (i) Let μ^* be an outer measure on X. If $A \subset X$ and $\mu^*(A) = 0$, then show that A is μ^* measurable.
- Q.3(a) Let (X, \mathscr{A}) be a measurable space, and let D be a dense subset of \mathbb{R} . Suppose that for each $\alpha \in D$ there is an associated $B_{\alpha} \in \mathscr{A}$ such that $B_{\alpha} \subset B_{\alpha'}$ whenever $\alpha < \alpha'$. Show that there is a unique measurable function f on X such that $f \leq \alpha$ on B_{α} and $f \geq \alpha$ on B_{α}^{c} for every $\alpha \in D$.
- (b) Let (X, \mathscr{A}) be a measurable space and f be a nonnegative measurable function. Show that [6] there is sequence $\{s_n\}$ of nonnegative measurable simple functions such that $s_n \leq s_{n+1}$ for all n and $s_n(x) \to f(x)$ as $n \to \infty$ for all $x \in X$.

- (b) Let (X, \mathcal{A}, μ) be a measure space, and let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on X. Show that $\int_X (\lim_{n\to\infty} f_n) d\mu = \lim_{n\to\infty} \int_X f_n d\mu$.
- Q.4(c) Let ν be a signed measure on a measurable space (X, \mathscr{A}) , and let $E \in \mathscr{A}$ with $0 < \nu(E) < \infty$. [6] Show that E contains a positive set A with $\nu(A) > 0$.
- (d) Let f be an integrable function on a measure space (X, \mathscr{A}, μ) . Define ν on \mathscr{A} by $\nu(E) =$ [6] $\int_E f d\mu$, $E \in \mathscr{A}$. Find a Hahn decomposition and the Jordan decomposition of ν .

- (d) Let ν and μ be σ finite measures on a measurable space (X, \mathscr{A}) , and let $\nu \ll \mu$. If f is 6 a nonnegative measurable function on X, then show that $\int_E f d\nu = \int_E f[\frac{d\nu}{d\mu}] d\mu$ for every $E \in \mathscr{A}$.
- Q.5(e) Let (X, \mathcal{A}, μ) be a finite measure space, $1 \leq p < \infty$ and q be such that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose that g is an integrable function on X satisfying $\left|\int_X g\varphi d\mu\right| \leq M\|\varphi\|_p$ for some M>0 and for all measurable simple functions φ . Show that $g \in L^q(\mu)$. [6]
- (f) Show that $(L^{\infty}(\mu), \|\cdot\|_{\infty})$ is complete.

OR

- (f) Let $1 \leq p < \infty$. Let $f \in L^p(\mu)$, and let $\epsilon > 0$. Prove that there is a measurable simple [6] function φ vanishing outside a set of finite measure such that $||f - \varphi||_p < \epsilon$.
- (g) Let μ^* be an outer measure on X. Show that the collection $\mathbb B$ of all μ^* measurable subsets [6] of X is a σ - algebra.
- (h) Let μ be a σ finite measure on an algebra $\mathcal A$ of subsets of X, and let μ^* be the outer [6] measure induced by μ . Show that a subset E of X is (μ^*) - measurable if and only if E can be expressed as a difference E = A - B, where A is an $\mathcal{A}_{\sigma\delta}$ - set and $\mu^*(B) = 0$.

(h) Let μ be a σ -finite measure on an algebra \mathcal{A} , and let μ^* be the induced outer measure. [6] Let \mathbb{B} be the σ - algebra of all (μ^*) - measurable subsets of X, and let \mathbb{B}' be the smallest σ algebra of subsets of X containing A. Show that the restriction of $\overline{\mu}$ to \mathbb{B}' is the unique extension of μ to \mathbb{B}' .