Seat No		<i>t</i>	No of print	ed pages: 2	•
[91 & A-11]	M.Sc. Seme Monday,	Catel University ster III Examination 24 th October 2016			
		.00 to 17.00		•	
Daman Cadai PSO	•	t: Mathematics Title of the	ne Paper: Banacl	ı Algebras	•
Paper Code: PS0	31/10111102	11010 01 0	Maximum		
Note: A, B denote on notations are usual.	complex Banach algeb	oras with identity ui			
Q.1 Write the question m (a) The algebra w	ith convolution multi	plication does not l	nave identity.	•	[8]
$ \begin{array}{ccc} \text{(i)} & \ell^1(\mathbb{Z}) \\ \text{(b)} & & \subseteq & \dots \end{array} $	(ii) $L^1(\mathbb{R})$	(iii) $\ell^1(\mathbb{Z}_4)$. (iv) $\ell^1(\mathbb{Z}_7)$		
(i) C[0,1], C[0,2](c) For a homomorphism	$f: \mathcal{A} \to \mathcal{B} \text{ and } x \in$	A,		$\mathcal{L}t([0,1])$	·
(i) $\operatorname{sp}_{\mathcal{A}}(x) \subset \operatorname{sp}_{\mathcal{B}}(x)$ (ii) $\operatorname{sp}_{\mathcal{A}}(x) = \operatorname{sp}_{\mathcal{B}}(x)$			$g_3(x) = \emptyset$ $g_3(x) \neq \emptyset$		
(d) \mathbb{C}^3 with pointwise of	oerations has n	naximal ideals.			
(i) 3	(ii) 6	(iii) 9	(iv) 12		•
(e) $\operatorname{Rad}(\mathbb{C}^n)$ with points					
(i) {0}	(ii) \mathbb{C}^n	(iii) \mathbb{C}^{n-1}	(iv) ℂ		
(f) Which of the followi	ng is a closed ideal of	$f C^7[0,1]? \{ f \in C^7 $	$[0,1]:$ }.	•	
(i) $f' = 0$	(ii) $f'' = 0$	(iii) $f'(0) = f'(1)$	f(0) = 0 (iv) f(0) = 0	f'(0) = 0	•
(g) Gel'fand transform (
(i) $ x^2 = x ^2$ for al (ii) $\mathcal{A} = M_2(\mathbb{C})$	•	(iii) $A = \ell^1$ (iv) $\dim(A) < \epsilon$	× ×		
(h) is a C^* -algebr	a	·.	•		
(i) $\mathcal{P}[0,1]$	(ii) $C(\mathbb{R})$	· (iii) ℃	(iv) ℓ^p		
Q.2 Attempt any Seven	ation on ${\cal A}$ is jointly	continuous.	, ,		[14
(b) Find the norm of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ in the C^* -algeb	ra $M_2(\mathbb{C})$.			
(c) Find the spectral ra (d) Define a complex had (e) Give an example of (f) Define a unitary election (g) If $x \in \text{Rad}(A)$, then (h) In a C^* -algebra A , (i) Show that $\{f \in C[0, 1]\}$	adius of $f \in C^1[0,1]$, an element x of a Basement of a C^* -algebra show that $r(x) = 0$.	where $f(t) = \cos(\sin \theta)$ anach algebra and θ anach algebra \mathcal{A} such and give its example and give its example.	th that $r(x) < \ x\ $. ple.	C[0,1].	,
	(<u> </u>		[Contd	J

No of printed pages: 2

Q.3 (Start a new page.) (a) Prove that $\mathcal{L}t(X) \subseteq B(X)$.	
(b) Define, and prove submultiplicativity of, a norm on $C^2[0,1]$ making it a Banach algebra.	[6]
OR	5.03
(b) Define topological divisor of zero and prove its existence in every infinite dimensional Banach algebra with identity.	[6]
Q.4 (Start a new page.)	
(c) For $x \in \mathcal{A}$, prove that $\operatorname{sp}(x)$ is compact. Does the result hold if \mathcal{A} is a real algebra? (d) Giving all details, prove that $\operatorname{Rad}(A)$ is a two sided ideal of \mathcal{A} .	[6] [6]
(d) Define the Gel'fand transform of an element x of a commutative unital Banach algebra A . Show that \widehat{A} contains constants and separates the points of $m(A)$.	[6]
Q.5 (Start a new page.)	
(e) For a compact T_2 topological space X, let \mathcal{I} be a closed ideal of $C(X)$. Show that there exists	[6]
$t_0 \in X$ such that $f(t_0) = 0$ for all $f \in \mathcal{I}$. (f) Show that the maximal ideal space of $C[0,1]$ is homeomorphic to $[0,1]$ OR	[6]
(f) For compact T_2 -spaces X, Y and a continuous function $h: X \to Y$, define $\psi: C(Y) \to C(X)$ by $\psi(f) = f \circ h$, $(f \in C(Y))$. Show that ψ is a continuous *-homomorphism.	[6]
Q.6 (Start a new page.) (g) Define an C^* -algebra. Prove that spectrum of a selfadjoint element of a C^* -algebra is real.	[6]
(h) For a normal element x of a C^* -algebra \mathcal{A} , show that $ x^2 = x ^2$.	[6]
OR	
(h) Define an involution on $A(\mathbb{D})$ making it a Banach*-algebra. Show that $A(\mathbb{D})$ is not a C^* -	[6]
algebra. **Example 1.5 **Exam	
· · · · · · · · · · · · · · · · · · ·	