Sardar Patel University Mathematics M.Sc. Semester III Friday, 21 October 2016 2.00 p.m. to 5.00 p.m. PS03EMTH01 - Functional Analysis II

Maximum Marks: 70

(P.T.O.)

	Choose the correct option for each of the following. Let $1 \le p < q \le \infty$. Which of the following is true?				[8]
	(a) $L^p[0,1] \subset L^q[0,1]$ (b) $L^p[0,1] \supset L^q[0,1]$ (c) $L^p[0,1] = L^q[0,1]$ (d) none of these				
	Let E_1 and E_2 be subsets of a normed space X . Which of the following is true? (a) If E_1 is open, then $E_1 \cup E_2$ is open. (b) If E_2 is open, then $E_1 + E_2$ is open. (c) $E_1 + E_2$ is closed if and only both E_1 and E_2 are closed. (d) If E_1 is compact, then $E_1 \cup E_2$ is compact. Let $\{0\} \neq X$ and Y be normed spaces, and let $T: X \to Y$ be linear and continuous. Let $\alpha = \sup\{\ Tx\ : \ x\ < 1\}$ and $\beta = \sup\{\ Tx\ : \ x\ = 1\}$. Which of the following is true?				
	(a) $\alpha < T $	(b) $\alpha < \beta$	(c) $\alpha > \beta$	(d) none of these	
4)	4) Let f be a nonzero linear functional on a normed space X . Which of the following is true				
	(a) f is continuous(b) f is onto		(c) f is a closed map(d) none of these		
5)	Which of the following is a Banach space with the sup norm?				
	(a) c_{00} (b) $C^2[0,1]$		(c) $\mathbb{P}[0,1]$ (d) $\{f \in C[0,1] : f(\frac{1}{2})\}$	$\left(\frac{3}{4}\right) = 0$	
6)	Let $D_m(x) = \sum_{k=-m}^m e^{ikx}$. Then the value of $\lim_{n\to\infty} \widehat{D_m}(n)$ is				
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) ∞	
7)	Let T be the Fredholm integral operator with continuous kernel k ? Which of the followi is true?				
	(a) $ T \le k _{\infty}$ (b) $ T > k _{\infty}$ (c) $ k \diamond k _{\infty} > k _{\infty}^{2}$ (d) none of these				
8)	The dual $(c_{00}, \ \cdot\ _{\infty})$	The dual $(c_{00}, \ \cdot\ _{\infty})$ is isometrically isomorphic to			
	(a) ℓ^1	(b) c_0	(c) ℓ [∞]	(d) ℓ^2	
a) b) (c) d)	Attempt any Seven. Let Y be a closed subspace of a normed space X. If a sequence $(x_n + Y)$ in X/Y converges to $x + Y \in X/Y$, then show that there is a sequence (y_n) in Y such that $x_n + y_n \to x$. Show that the closure of a convex set in a normed space is a convex set. Let $(X, \ \cdot\)$ be a normed space, and let f be a nonzero linear functional on X. Show that $f(E)$ is an open set for every open subset E of X. Let $f: (c_{00}, \ \cdot\ _{\infty}) \to \mathbb{K}$ be $f((x(k))) = \sum_{k=1}^{n} x(k)$. Find the norm of f. Let X and Y be normed space, and let $\mathscr{F} \subset BL(X, Y)$. If \mathscr{F} is unbounded at some $x \in X$, then show that \mathscr{F} is unbounded at every x in a dense subset of X.				[14]
	· · · · · · · · · · · · · · · · · · ·				

- (f) Let Z be a closed subspace of a normed space X. Let $Q: X \to X/Z$ be Q(x) = x + Z. Show that Q is an open map.
- (g) Let P be a projection on a normed space X. If P is closed, then show that both Z(P) and R(P) are closed in X.
- (h) Define weak convergence of a sequence of a normed space. Show that weak limit of a sequence is unique.
- (i) Let F' be the transpose of $F \in BL(X,Y)$. Show that ||F'|| = ||F||.

Q.3

- [6] (a) Let $\{y_1, y_2, \dots, y_m\}$ be a basis of a normed space X. For $n \in \mathbb{N}$, let $x_n = k_{n1}y_1 + k_{n2}y_2 + k$ $\cdots + k_{nm}y_m$ and $x = k_1y_1 + k_2y_2 + \cdots + k_my_m$, where k_{ij} and k_i are scalars. Show that $x_n \to x$ if and only if $k_{nj} \to k_j$ for all $j = 1, 2, \ldots, m$. Also, show that (x_n) is bounded if and only if each (k_{nj}) is bounded.
- (b) Let X be a normed space. If the set $\{x \in X : ||x|| \le 1\}$ is compact, then show that X is [6] finite dimensional. State the results you use.

OR

(b) Let $\|\cdot\|$ and $\|\cdot\|'$ be norms on a linear space X. When is $\|\cdot\|$ called stronger than $\|\cdot\|'$? [6] Show that $\|\cdot\|$ and $\|\cdot\|'$ are equivalent if and only if there are positive constants α and β such that $\alpha \| \cdot \| \leq \| \cdot \|' \leq \beta \| \cdot \|$.

- (c) State and prove Hahn-Banach Separation Theorem.
- 6 (d) Consider $X = \{x \in C[-\pi, \pi] : x(-\pi) = x(\pi)\}$ with the sup norm. Show that the Fourier [6] series of every x in a dense subset of X diverges at 0.

OR

(d) Let Y be a closed subspace of a normed space X. Show that X is a Banach space if and 6 only if both Y and X/Y are Banach spaces. State the result you use.

Q.6

- (e) (a) Let X and Y be normed spaces, and let $F: X \to Y$ be linear. Suppose that Z(F) is [3] closed in X. Let $\widetilde{F}: X/Z \to Y$ be $\widetilde{F}(x+Z(F)) = F(x)$. Show that F is an open map if and only if \widetilde{F} is an open map.
 - (ख) If X is a Banach space with the norms $\|\cdot\|$ and $\|\cdot\|'$, then show that either $\|\cdot\|$ and [3] $\|\cdot\|'$ are equivalent or they are not comparable.
- (f) State and prove Closed Graph Theorem.

(f) Show that $(C[a,b], \|\cdot\|_1)$ and $(C^1[a,b], \|\cdot\|_{\infty})$ are not Banach spaces.

6 [6]

[6]

(g) Let X be a normed space. If X' is separable, then show that X is separable. Is the converse true? Justify.

(h) Show that weak convergence implies weak*- convergence. Also show that every bounded [6] sequence in X' has a weak*- convergent subsequence.

- (h) (IT) Let $T \in BL(X,Y)$. Show that T is not bounded below if and only if there is a sequence [3] (x_n) in X such that $||x_n|| = 1$ for all n and $||Tx_n|| \to 0$ as $n \to \infty$.
 - (덕) Let $T \in BL(X)$. If $\lambda \in \sigma_a(T)$, then show that $|\lambda| \leq \inf_{n \in \mathbb{N}} ||T^n||^{\frac{1}{n}}$. [3]

