(57 & A-21)	Seat NO!	,
-------------	----------	--------------

No of printed pages: 2

Sardar Patel University

Mathematics
M.Sc. Semester III
Monday, 17 October 2016
2.00 p.m. to 5.00 p.m.

	Monday, 17 Oct 2.00 p.m. to 5	.00 p.m.		
	PS03CMTH01 - Re		Maximum Marks: 70	
1.1 Choose the correct op 1) Let $X = \{1, 2, 3\}$, and algebra on X contains	$\{1 \text{ let } \mathcal{U} = \{\{1\}, \{2\}\}. \ \text{ T} \}$	lowing. hen the number of ele		[8]
(a) 2	(b) 4	(c) 6	(d) 8	
(2) Let (X, \mathcal{A}) be a mean following implies that	surable space, and let of is measurable?	$f:X o [-\infty,\infty]$ be ϵ	a function. Which of the	
(a) f^2 is measurable (b) $ f $ is measurable		(c) f is one one(d) None of these		
(3) Let δ_0 be the point m Then $\nu([-1,1]) = \dots$	ass measure at 0, and l	et m be the Lebesgue n	measure. Let $\nu = \delta_0 - m$.	
(a) 1		(c) 2	(d) none of these	
(4) Let ν be a signed methat $\nu = 0$?	easure and μ be a meas	sure on (X, \mathscr{A}) . Which	h of the following implies	
(a) $\nu \ll \mu$	(b) $\nu \perp \mu$	(c) $\mu = 0$	(d) $\nu \ll \mu$ and $\nu \perp \mu$	
(5) Let $f, g \in L^2(\mu)$. Th	en fg is in			
(a) $L^1(\mu)$	(b) $L^2(\mu)$	(c) $L^{\infty}(\mu)$	(d) none of these	
(6) The concept of prod	uct measure makes use	of		
(a) Radon-Nikodyn		(c) Cumulative Dist(d) None of these	ribution Function	·
(7) If μ^* is an outer mean	asure on X and $E \subsetneq F$	$\subset X$, then which of the	he following is true?	
(a) $\mu^*(E) < \mu^*(F)$	(b) $\mu^*(E) \le \mu^*(F)$	(c) $\mu^*(E) \ge \mu^*(F)$	(d) $\mu^*(E) > \mu^*(F)$	
(8) Suppose $f \in L^{\infty}(\mu)$	with $ f _{\infty} = 1$. Let g	= f a.e Then		
(a) $ g _{\infty} \leq 1$	(b) $ g _{\infty} \geq 1$	(c) $ g _{\infty} = 1$	(d) none of these	
Q.2 Attempt any Sever (a) Show that a measur	rable set contained in a	set of σ-finite measures function with a meas	re is of σ -finite measure. surable function is measur-	[14]
able.	position of a continuous	_	(P17.01)	

(c) Let f be a nonnegative measurable function on a measure space (X, \mathcal{A}, μ) . If $\int_X f d\mu = 0$, then show that f = 0 a.e. $[\mu]$ on X. (d) Let ν be a signed measure on a measurable space (X, \mathscr{A}) . Show that $|\nu(E)| \leq |\nu|(E)$ for all measurable set E. (e) Let ν , λ and μ be σ -finite measures on a measurable space (X, \mathscr{A}) . If $\nu \ll \mu \ll \lambda$, then show that $\left[\frac{d\nu}{d\lambda}\right] = \left|\frac{d\nu}{d\mu}\right| \left|\frac{d\mu}{d\lambda}\right|$. (f) If f is an essentially bounded function on a measure space (X, \mathcal{A}, μ) , then show that $|f(t)| \le ||f||_{\infty}$ a.e. $[\mu]$ on X. (g) State a Density Theorem in L^p - spaces, 1 .(h) Show that the outer measure induced by a measure on an algebra is regular. (i) If F is a cumulative distribution of a Baire measure μ , show that $\lim_{x\to -\infty} F(x) = 0$. Q.3(a) State and Prove Lebesgue Dominated Convergence Theorem. [6] (b) Let (X, \mathcal{A}) be a measurable space, and let D be a dense subset of \mathbb{R} . Suppose that for each [6] $\alpha \in D$ there is an associated $B_{\alpha} \in \mathscr{A}$ such that $B_{\alpha} \subset B_{\alpha'}$ whenever $\alpha < \alpha'$. Prove that there is a unique measurable function f on X such that $f \leq \alpha$ on B_{α} and $f \geq \alpha$ on B_{α}^{c} for every $\alpha \in D$. OR. (b) State and prove Fatou's Lemma. Just state whether this result can be obtained from [6] Monotone Convergence Theorem. Q.4 (c) State and prove Hahn Decomposition Theorem. 6 (d) State and prove Lebesgue Decomposition Theorem. 6 (d) If ν is a signed measure on a measurable space (X, \mathscr{A}) , then show that there exists unique measures ν_1 and ν_2 on (X, \mathscr{A}) such that $\nu = \nu_1 - \nu_2$ and $\nu_1 \perp \nu_2$. (e) Suppose that (X, \mathcal{A}, μ) is a σ -finite measure space. Let $1 , and let <math>q \in \mathbb{R}$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. For $g \in L^q(\mu)$, define $F_g : L^p(\mu) \to \mathbb{R}$ by $F_g(f) = \int_X fg d\mu$ for all $f \in L^p(\mu)$. Prove that F_g is a continuous linear functional on $L^p(\mu)$ and $\|F_g\| = \|g\|_q$. (f) State and prove Minkowski's inequality. Further, discuss when equality holds. [6] (f) Show that $(L^{\infty}(\mu), \|\cdot\|_{\infty})$ is a normed algebra. [6] Q:6(g) State and prove Caratheodory's Extension Theorem. (h) Prove that the restriction of the outer measure to the collection of all measurable sets is a [6] complete measure. OR (h) Suppose that μ is a measure on an algebra \mathcal{A} and μ^* is the induced outer measure. Prove that $\mu^* = \mu$ on \mathcal{A} . Also, show that every member of \mathcal{A} is measurable.