No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-III), PS03EMTH37, Mathematical Probability Theory; Friday, 29th March, 2019; 02.00 p.m. to 05.00 p.m.

Maximum Marks: 70

[8]

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

- Q.1 Answer the following.
 - 1. Let (Ω, \mathcal{A}, P) be probability space. Which one from following is true?
 - (A) $P(A \cap B) = P(A) + P(B) + P(A \cup B)$
 - (B) $P(A \cap B) P(A) = P(A \cup B) P(B)$
 - (C) $P(A) P(A \cap B) = P(A \cup B) P(B)$
 - (D) None of these
 - 2. Let $P(A) = 0.30, P(B) = 0.78, P(A \cap B) = 0.16$. Then
 - (A) $P(A^c \cap B^c) = 0.24$
- (B) $P(A^c \cup B^c) = 0.76$
- (C) $P(A \cap B^c) = 0.14$
- (D) None of these are true
- 3. Let X be a random variable on (Ω, \mathcal{A}, P) . Then $P(X \leq a) =$
- (A) $\int_{-a}^{\infty} f(x)dx$ (B) $\int_{0}^{\infty} f(x)dx$ (C) $\int_{-\infty}^{a} f(x)dx$
- (D) None of these

- 4. Var(5 X) =
 - (A) Var(-X)
- (B) 5 Var(X) (C) Var(X)
- (D) $5 + \operatorname{Var}(X)$
- 5. Let X_n be a sequence of rvs having $E(X_n) = 0$ and $Var(X_n) = \frac{2}{n}$. Then
 - (A) $X_n \xrightarrow{P} 2$
- (B) $X_n \xrightarrow{P} 1$ (C) $X_n \xrightarrow{P} 0$
- (D) none of these

- 6. $X_n \xrightarrow{P} 0 \Leftrightarrow$

- (B) $\lim_{n\to\infty} Var(X_n) = 0$
- (A) $\lim_{n \to \infty} E(X_n) = 0$ (C) $\lim_{n \to \infty} Var(X_n^2) = 0$
- (D) none of these
- 7. If $\phi(u)$ is characteristic function of random variable X, then
 - (A) $\phi(-u) > \phi(0)$

(B) $\phi(-u) > \phi(u)$

(C) $\phi(-u) = \overline{\phi}(u)$

- (D) none of (A),(B),(C) is true
- 8. Let F be a distribution function and h be corresponding characteristic function. For any u > 0, $\exists K > 0 \ni \frac{u}{K} \int_{|x| \ge \frac{1}{u}} dF(x)$
- (B) $\geq \int_0^u [h(0) Re(h(v))] dv$ (D) none of these
- (A) $\leq \int_0^u [Re(h(v)) h(0)] dv$ (C) $\leq \int_0^u [h(0) Re(h(v))] dv$
- (D) none of these

- Q.2 Attempt any seven:
- (a) Define probability measure.
- (b) Let $\Omega = \{a, b, c, d\}, A = \{\phi, \Omega, \{a, b\}, \{c, d\}\} \text{ and } X : \Omega \to \mathbb{R}$ defined by X(a) = -1 = X(b), X(c) = 1, X(d) = -2. Is X a random variable?
- (c) Show that sum of two rvs is a rv.
- (d) State and prove Chebyshev's inequality.
- (e) Show that E(aX) = aE(X) where $a \in \mathbb{R}$ and X is non negative random variable.
- (f) Define convergence almost surely.
- (g) State monotone convergence theorem.
- (h) State Helly-Bray theorem.
- (i) Define characteristic function of a random variable.

(P.T.O)

[14]

Q.3[6] (a) State and prove Jordan decomposition theorem. (b) Let $X = (I_A, I_B)$ where $A, B \in \mathcal{A}$. Then Show that X is a vector random variable. [6] OR (b) Find mean and variance of standard normal random variable. Q.4[6] (a) State and prove C_r inequality. [6] (b) State and prove Jensen's inequality. OR (b) Let X & Y be simple rvs. Then show that $E(aX + bY) = aE(X) + bE(Y), a, b \in \mathbb{R}$. (a) Prove: $X_n \xrightarrow{P} 0 \Leftrightarrow E\left(\frac{|X_n|}{1+|X_n|}\right) \to 0 \text{ as } n \to \infty.$ (b) Prove: $X_n Y_n \xrightarrow{a.s.} XY$, if $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$ [6] [6](b) State and prove dominated convergence theorem. Q.6[6] (a) State and prove Levy's theorem. [6] (b) State and prove Kolmogorav's inequality.

(b) Show that characteristic function of random variable is continuous. State results which you use.

