[128	Seat No			No. of printed pages: 2	
				xamination	
\mathbf{Time}	: 02:00 p.m. to	05:00 p.m.		Maximum marks: 70	
Note:	/- \ ·	e right indicate mar l/standard notations			
Q-1 C	hoose the most a	ppropriate option f	for each of the follo	owing questions.	[08]
1.	The group	is abelian.			
	(a) S_2	(b) S_3	(c) S_5	(d) S_6	
2.	Let G be a finite	e group and $a \in G$.	Then $a^{2o(G)} = $	············••	
	(a) a	(b) a^2	(c) e	(d) none of these	
3.	The number of c	dd permutations i	n S_5 is	. ,	
	(a) 5	(b) 30	(c) 60	(d) 120	
4.	is a vali	d class equation of	a group of order	5.	
	(a) $5 = 1 + 4$	-	(c) $5 = 1 +$		
	(b) $5 = 2 + 3$		(d) $5 = 1 +$	1+1+1+1	
	If G is a group a subgroups of G		uch that $p \mid o(G)$,	then the number of p-Sylow	
	(a) is always mo	•	(c) divides	p	
	(b) is always less	s an p	(d) does no	(d) does not divide p	
6.	The permutation	group S_4 cannot l	have aSy	low subgroup.	
	(a) 2	(b) 3	(c) 5	(d) 8	
7.	The number of n	on-isomorphic abe	lian groups of orde	er 108 is	
	(a) 3	(b) 5	(c) 6	(d) 7	
8.	The invariants of	f Klein-4 group are	;		
	(a) 2,2	(b) 1,1	(c) $2, 1$	(d) $2,4$	
Q-2 At	tempt anu seve	en of the following.			[14]
				lian group under addition.	[**]
	State Lagrange		110 € 223 15 am ave	non group under addition.	
			- J-Cm-31- 70/ \	1 (I) 11 (II) = 4/(C)	
(0)	Let Che a grou	in and $T:C \to C$ b	so defined by $T(n)$.	$-x^{-1}$ Show that $T \subset A(C)$	

- (c) Let G be a group and $T: G \to G$ be defined by $T(x) = x^{-1}$. Show that $T \in A(G)$.
- (d) Given an example of a permutation in S_4 which is conjugate to (2, 1, 4).
- (e) Give an example of a simple group.
- (f) Define a solvable group.
- (g) Define a p-Sylow subgroup of a group for a prime p.
- (h) Define internal direct product of groups.
- (i) Let A and B be any two groups and e be the identity of A. Show that the set $\bar{B} = \{(e, b) \in G \mid b \in B\}$ is a normal subgroup of $A \times B$.

Q-3 (a) Let G be a finite abelian group and p be a prime such that $p \mid o(G)$. Show that [06] there is $a \in G$, such that o(a) = p. (b) Let H and K be two subgroups of a group G. Show that HK is a subgroup of [06]G if and only if HK = KH. OR (b) Let G and G' be two groups and $\varphi: G \to G'$ be an onto homomorphism. Show [06] that $G/\ker \varphi$ is isomorphic to G'. Q-4 (a) Let G be a group of order p^n , where p is a prime and $n \in \mathbb{N}$. Show that $|Z(G)| \neq 1$ [06] and deduce that a group of order p^2 is abelian. (b) Define inner automorphism of a group G. If $\mathscr{I}(G)$ denotes the group of all inner [06]automorphisms of G, then prove that $\mathscr{I}(G) \approx G/Z(G)$ OR (b) Prove that every group is isomorphic to a subgroup of A(S) for some set S. [06] Q-5 (a) State and prove Sylow's theorem. [06](b) Show that there is no non-abelian group of order $11^2 \times 13^2$. [06]OR(b) Show that a group of order 72 cannot be simple. [06]Q-6 (a) Let p be a prime. Prove that two groups of order p^n are isomorphic if they have [06]the same invariants. (b) For an abelian group G and an integer s, let $G(s) = \{x \in G \mid x^s = e\}$, where e is [06] identity of the group G. Prove that if G and G' are isomorphic abelian groups, then $\forall s \in \mathbb{Z}$, G(s) and G'(s) are isomorphic. (b) Prove that every finite abelian group is the direct product of cyclic groups. [06]

- X --