No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester III) Examination

Date:	1-4-2019	, monday	
-------	----------	----------	--

Time: 2.00 To 5.00 p.m.

Subject: MATHEMATICS

Paper No. PS03EMTH23 - (Graph Theory - II)

					Total Marks: 7	0	
1.		Choose the correct option for each question:					
	(1)	The number of spa (a) 4 ³	nning trees in $K_{1,4}$ in (b) 4^2	is (c) 4	(d) 1		
	(2)	If all the digits in t (a) Star graph	he Pruffer code are s (b) Path graph	same, then the grap (c) Cycle graph	oh is (d) K _{n, n} (n > 1)		
	(3)	A shortest path between two vertices in (a) Kruscal algorithm (c) BFS algorithm		, , , , , , , , , , , , , , , , , , , ,			
(4) In a nety (a) d ⁺ (s		In a network, if s is (a) $d^{+}(s) = 0 = d^{-}(s)$ (c) $d^{+}(s) = 0$, $d^{-}(t)$	• /	x, then (b) $d^{+}(s) > 0$, $d^{-}(t)$ (d) $d^{+}(s) > 0$, $d^{-}(t)$	•		
	(5)	Let A be a matrix (a) -12	with spectrum {-2, - (b) 12	$-1, 2, -3, 1$ }. Then (c) -2	det(A) = $ (d) -3$		
	(6)	Let G be a graph w (a) ≥ 5	with $\lambda_{\max}(G) = 4$. The $(b) \le 5$	$ \begin{array}{l} \text{en } \chi(G) \\ \text{(c) } \leq 3 \end{array} $	$(d) \geq 3$		
	(7)	The Ramsey numb (a) 3	er R(3, 3) is (b) < 6	(c) > 6	(d) 6		
	(8)	If $E = \{a, b, c\}$ wit	$h M = \{\{a\}, \{b\}, \{a, a\}\}$,b}} as hereditary s	ystem, then $C_{\rm M} =$		
		(a) $\{\{c\}, \{a,c\}\}$	(b) {{c}, {b,c}}	(c) {c}	(d) {{a,b,c}}		
2.		Attempt any SEVE	EN:			[14]	
	(a)	Find a tree with Pruffer code (242).					
	(b)	State Matrix tree th	neorem.				
	(c)	If f is a flow on a network $N = (V, A)$, then find $f(\{s\}, V)$ and $f(\{t\}, V)$.					
	(d)	Define u-v vertex separating set and give one example of it.					
	(e)		nh († λ(G) < Λ(G	_			

- e: For any graph G, $\lambda_{max}(G) \leq \Delta(G)$.
- (f) Prove: If G is k regular graph, then k is an eigen value of G.
- (g) Prove: R(p, 2) = p, for every $p \ge 2$.
- State Pigeonhole Principle. (h)
- (i) Prove: For $X \subset E$ and $e \in E$, $r(X + e) \le r(X) + 1$.

<i>J</i> ,	(4)	decomposed into 2m+1 copies of T.	[6]
	(b)	Find $\tau(C_4)$ by contraction of edge method.	[6]
		OR	
	(b)	Prove: If $e \in E(G)$ is not a loop, then $\tau(G) = \tau(G - e) + \tau(G \cdot e)$.	[6]
4.	(a)	Let f be a flow in a network $N = (V, A)$ with value d. Prove that, if $A(X, \overline{X})$ is a cut in N, then $d = f(X, \overline{X}) - f(\overline{X}, X)$.	[6]
	(b)	Define source, sink and flow in a network N and illustrate these concepts by giving one example of a network N with at least five vertices.	[6]
		OR	
	(b)	Write Dijkstras's algorithm.	[6]
5.	(a)	Prove: If G is bipartite graph, then non-zero eigen values of G occur in pair $(\lambda, -\lambda)$.	[6]
	(b)	Find $sp(K_{1,3})$.	[6]
		OR	[°]
	(b)	Prove: The diameter of G is less than the number of distinct eigen values of G.	[6]
6.	(a)	Prove: $R(p, q) \le R(p-1, q) + R(p, q-1), \forall p, q > 2.$	[6]
	(b)	Prove (ANY ONE): In a hereditary system,	[6]
		(i) Sub modularity property (R) \Rightarrow Weak elimination property (C).	
		(ii) Augmentation property (I) \Rightarrow Uniformity property (U).	•

X-X-X-X-X-X